Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem54 Structured version   Visualization version   GIF version

Theorem fourierdlem54 39710
 Description: Given a partition 𝑄 and an arbitrary interval [𝐶, 𝐷], a partition 𝑆 on [𝐶, 𝐷] is built such that it preserves any periodic function piecewise continuous on 𝑄 will be piecewise continuous on 𝑆, with the same limits. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem54.t 𝑇 = (𝐵𝐴)
fourierdlem54.p 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
fourierdlem54.m (𝜑𝑀 ∈ ℕ)
fourierdlem54.q (𝜑𝑄 ∈ (𝑃𝑀))
fourierdlem54.c (𝜑𝐶 ∈ ℝ)
fourierdlem54.d (𝜑𝐷 ∈ ℝ)
fourierdlem54.cd (𝜑𝐶 < 𝐷)
fourierdlem54.o 𝑂 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = 𝐶 ∧ (𝑝𝑚) = 𝐷) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
fourierdlem54.h 𝐻 = ({𝐶, 𝐷} ∪ {𝑥 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄})
fourierdlem54.n 𝑁 = ((#‘𝐻) − 1)
fourierdlem54.s 𝑆 = (℩𝑓𝑓 Isom < , < ((0...𝑁), 𝐻))
Assertion
Ref Expression
fourierdlem54 (𝜑 → ((𝑁 ∈ ℕ ∧ 𝑆 ∈ (𝑂𝑁)) ∧ 𝑆 Isom < , < ((0...𝑁), 𝐻)))
Distinct variable groups:   𝐴,𝑖,𝑚,𝑝   𝐵,𝑖,𝑚,𝑝   𝐶,𝑚,𝑝   𝑥,𝐶   𝐷,𝑚,𝑝   𝑥,𝐷   𝑓,𝐻   𝑥,𝐻   𝑖,𝑀,𝑚,𝑝   𝑓,𝑁   𝑖,𝑁,𝑚,𝑝   𝑥,𝑁,𝑖   𝑄,𝑖,𝑘   𝑄,𝑝   𝑥,𝑄,𝑘   𝑆,𝑓   𝑆,𝑖,𝑝   𝑥,𝑆   𝑇,𝑖,𝑘,𝑥   𝜑,𝑓   𝜑,𝑖,𝑘
Allowed substitution hints:   𝜑(𝑥,𝑚,𝑝)   𝐴(𝑥,𝑓,𝑘)   𝐵(𝑥,𝑓,𝑘)   𝐶(𝑓,𝑖,𝑘)   𝐷(𝑓,𝑖,𝑘)   𝑃(𝑥,𝑓,𝑖,𝑘,𝑚,𝑝)   𝑄(𝑓,𝑚)   𝑆(𝑘,𝑚)   𝑇(𝑓,𝑚,𝑝)   𝐻(𝑖,𝑘,𝑚,𝑝)   𝑀(𝑥,𝑓,𝑘)   𝑁(𝑘)   𝑂(𝑥,𝑓,𝑖,𝑘,𝑚,𝑝)

Proof of Theorem fourierdlem54
Dummy variables 𝑤 𝑦 𝑧 𝑗 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fourierdlem54.n . . 3 𝑁 = ((#‘𝐻) − 1)
2 2z 11361 . . . . . 6 2 ∈ ℤ
32a1i 11 . . . . 5 (𝜑 → 2 ∈ ℤ)
4 fourierdlem54.c . . . . . . . . . 10 (𝜑𝐶 ∈ ℝ)
5 prid1g 4270 . . . . . . . . . 10 (𝐶 ∈ ℝ → 𝐶 ∈ {𝐶, 𝐷})
6 elun1 3763 . . . . . . . . . 10 (𝐶 ∈ {𝐶, 𝐷} → 𝐶 ∈ ({𝐶, 𝐷} ∪ {𝑥 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄}))
74, 5, 63syl 18 . . . . . . . . 9 (𝜑𝐶 ∈ ({𝐶, 𝐷} ∪ {𝑥 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄}))
8 fourierdlem54.h . . . . . . . . 9 𝐻 = ({𝐶, 𝐷} ∪ {𝑥 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄})
97, 8syl6eleqr 2709 . . . . . . . 8 (𝜑𝐶𝐻)
10 ne0i 3902 . . . . . . . 8 (𝐶𝐻𝐻 ≠ ∅)
119, 10syl 17 . . . . . . 7 (𝜑𝐻 ≠ ∅)
12 prfi 8187 . . . . . . . . . 10 {𝐶, 𝐷} ∈ Fin
13 fourierdlem54.p . . . . . . . . . . . . 13 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
14 fourierdlem54.m . . . . . . . . . . . . 13 (𝜑𝑀 ∈ ℕ)
15 fourierdlem54.q . . . . . . . . . . . . 13 (𝜑𝑄 ∈ (𝑃𝑀))
1613, 14, 15fourierdlem11 39668 . . . . . . . . . . . 12 (𝜑 → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵))
1716simp1d 1071 . . . . . . . . . . 11 (𝜑𝐴 ∈ ℝ)
1816simp2d 1072 . . . . . . . . . . 11 (𝜑𝐵 ∈ ℝ)
1916simp3d 1073 . . . . . . . . . . 11 (𝜑𝐴 < 𝐵)
20 fourierdlem54.t . . . . . . . . . . 11 𝑇 = (𝐵𝐴)
2113, 14, 15fourierdlem15 39672 . . . . . . . . . . . 12 (𝜑𝑄:(0...𝑀)⟶(𝐴[,]𝐵))
22 frn 6015 . . . . . . . . . . . 12 (𝑄:(0...𝑀)⟶(𝐴[,]𝐵) → ran 𝑄 ⊆ (𝐴[,]𝐵))
2321, 22syl 17 . . . . . . . . . . 11 (𝜑 → ran 𝑄 ⊆ (𝐴[,]𝐵))
2413fourierdlem2 39659 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ ℕ → (𝑄 ∈ (𝑃𝑀) ↔ (𝑄 ∈ (ℝ ↑𝑚 (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
2514, 24syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑄 ∈ (𝑃𝑀) ↔ (𝑄 ∈ (ℝ ↑𝑚 (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
2615, 25mpbid 222 . . . . . . . . . . . . . . 15 (𝜑 → (𝑄 ∈ (ℝ ↑𝑚 (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1)))))
2726simpld 475 . . . . . . . . . . . . . 14 (𝜑𝑄 ∈ (ℝ ↑𝑚 (0...𝑀)))
28 elmapi 7831 . . . . . . . . . . . . . 14 (𝑄 ∈ (ℝ ↑𝑚 (0...𝑀)) → 𝑄:(0...𝑀)⟶ℝ)
29 ffn 6007 . . . . . . . . . . . . . 14 (𝑄:(0...𝑀)⟶ℝ → 𝑄 Fn (0...𝑀))
3027, 28, 293syl 18 . . . . . . . . . . . . 13 (𝜑𝑄 Fn (0...𝑀))
31 fzfid 12720 . . . . . . . . . . . . 13 (𝜑 → (0...𝑀) ∈ Fin)
32 fnfi 8190 . . . . . . . . . . . . 13 ((𝑄 Fn (0...𝑀) ∧ (0...𝑀) ∈ Fin) → 𝑄 ∈ Fin)
3330, 31, 32syl2anc 692 . . . . . . . . . . . 12 (𝜑𝑄 ∈ Fin)
34 rnfi 8201 . . . . . . . . . . . 12 (𝑄 ∈ Fin → ran 𝑄 ∈ Fin)
3533, 34syl 17 . . . . . . . . . . 11 (𝜑 → ran 𝑄 ∈ Fin)
3626simprd 479 . . . . . . . . . . . . . 14 (𝜑 → (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))
3736simpld 475 . . . . . . . . . . . . 13 (𝜑 → ((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵))
3837simpld 475 . . . . . . . . . . . 12 (𝜑 → (𝑄‘0) = 𝐴)
3914nnnn0d 11303 . . . . . . . . . . . . . . 15 (𝜑𝑀 ∈ ℕ0)
40 nn0uz 11674 . . . . . . . . . . . . . . 15 0 = (ℤ‘0)
4139, 40syl6eleq 2708 . . . . . . . . . . . . . 14 (𝜑𝑀 ∈ (ℤ‘0))
42 eluzfz1 12298 . . . . . . . . . . . . . 14 (𝑀 ∈ (ℤ‘0) → 0 ∈ (0...𝑀))
4341, 42syl 17 . . . . . . . . . . . . 13 (𝜑 → 0 ∈ (0...𝑀))
44 fnfvelrn 6317 . . . . . . . . . . . . 13 ((𝑄 Fn (0...𝑀) ∧ 0 ∈ (0...𝑀)) → (𝑄‘0) ∈ ran 𝑄)
4530, 43, 44syl2anc 692 . . . . . . . . . . . 12 (𝜑 → (𝑄‘0) ∈ ran 𝑄)
4638, 45eqeltrrd 2699 . . . . . . . . . . 11 (𝜑𝐴 ∈ ran 𝑄)
4737simprd 479 . . . . . . . . . . . 12 (𝜑 → (𝑄𝑀) = 𝐵)
48 eluzfz2 12299 . . . . . . . . . . . . . 14 (𝑀 ∈ (ℤ‘0) → 𝑀 ∈ (0...𝑀))
4941, 48syl 17 . . . . . . . . . . . . 13 (𝜑𝑀 ∈ (0...𝑀))
50 fnfvelrn 6317 . . . . . . . . . . . . 13 ((𝑄 Fn (0...𝑀) ∧ 𝑀 ∈ (0...𝑀)) → (𝑄𝑀) ∈ ran 𝑄)
5130, 49, 50syl2anc 692 . . . . . . . . . . . 12 (𝜑 → (𝑄𝑀) ∈ ran 𝑄)
5247, 51eqeltrrd 2699 . . . . . . . . . . 11 (𝜑𝐵 ∈ ran 𝑄)
53 eqid 2621 . . . . . . . . . . 11 (abs ∘ − ) = (abs ∘ − )
54 eqid 2621 . . . . . . . . . . 11 ((ran 𝑄 × ran 𝑄) ∖ I ) = ((ran 𝑄 × ran 𝑄) ∖ I )
55 eqid 2621 . . . . . . . . . . 11 ran ((abs ∘ − ) ↾ ((ran 𝑄 × ran 𝑄) ∖ I )) = ran ((abs ∘ − ) ↾ ((ran 𝑄 × ran 𝑄) ∖ I ))
56 eqid 2621 . . . . . . . . . . 11 inf(ran ((abs ∘ − ) ↾ ((ran 𝑄 × ran 𝑄) ∖ I )), ℝ, < ) = inf(ran ((abs ∘ − ) ↾ ((ran 𝑄 × ran 𝑄) ∖ I )), ℝ, < )
57 fourierdlem54.d . . . . . . . . . . 11 (𝜑𝐷 ∈ ℝ)
58 eqid 2621 . . . . . . . . . . 11 (topGen‘ran (,)) = (topGen‘ran (,))
59 eqid 2621 . . . . . . . . . . 11 ((topGen‘ran (,)) ↾t (𝐶[,]𝐷)) = ((topGen‘ran (,)) ↾t (𝐶[,]𝐷))
60 oveq1 6617 . . . . . . . . . . . . . 14 (𝑥 = 𝑤 → (𝑥 + (𝑘 · 𝑇)) = (𝑤 + (𝑘 · 𝑇)))
6160eleq1d 2683 . . . . . . . . . . . . 13 (𝑥 = 𝑤 → ((𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄 ↔ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄))
6261rexbidv 3046 . . . . . . . . . . . 12 (𝑥 = 𝑤 → (∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄 ↔ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄))
6362cbvrabv 3188 . . . . . . . . . . 11 {𝑥 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄} = {𝑤 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄}
64 oveq1 6617 . . . . . . . . . . . . . . . 16 (𝑖 = 𝑗 → (𝑖 · 𝑇) = (𝑗 · 𝑇))
6564oveq2d 6626 . . . . . . . . . . . . . . 15 (𝑖 = 𝑗 → (𝑦 + (𝑖 · 𝑇)) = (𝑦 + (𝑗 · 𝑇)))
6665eleq1d 2683 . . . . . . . . . . . . . 14 (𝑖 = 𝑗 → ((𝑦 + (𝑖 · 𝑇)) ∈ ran 𝑄 ↔ (𝑦 + (𝑗 · 𝑇)) ∈ ran 𝑄))
6766anbi1d 740 . . . . . . . . . . . . 13 (𝑖 = 𝑗 → (((𝑦 + (𝑖 · 𝑇)) ∈ ran 𝑄 ∧ (𝑧 + (𝑙 · 𝑇)) ∈ ran 𝑄) ↔ ((𝑦 + (𝑗 · 𝑇)) ∈ ran 𝑄 ∧ (𝑧 + (𝑙 · 𝑇)) ∈ ran 𝑄)))
68 oveq1 6617 . . . . . . . . . . . . . . . 16 (𝑙 = 𝑘 → (𝑙 · 𝑇) = (𝑘 · 𝑇))
6968oveq2d 6626 . . . . . . . . . . . . . . 15 (𝑙 = 𝑘 → (𝑧 + (𝑙 · 𝑇)) = (𝑧 + (𝑘 · 𝑇)))
7069eleq1d 2683 . . . . . . . . . . . . . 14 (𝑙 = 𝑘 → ((𝑧 + (𝑙 · 𝑇)) ∈ ran 𝑄 ↔ (𝑧 + (𝑘 · 𝑇)) ∈ ran 𝑄))
7170anbi2d 739 . . . . . . . . . . . . 13 (𝑙 = 𝑘 → (((𝑦 + (𝑗 · 𝑇)) ∈ ran 𝑄 ∧ (𝑧 + (𝑙 · 𝑇)) ∈ ran 𝑄) ↔ ((𝑦 + (𝑗 · 𝑇)) ∈ ran 𝑄 ∧ (𝑧 + (𝑘 · 𝑇)) ∈ ran 𝑄)))
7267, 71cbvrex2v 3171 . . . . . . . . . . . 12 (∃𝑖 ∈ ℤ ∃𝑙 ∈ ℤ ((𝑦 + (𝑖 · 𝑇)) ∈ ran 𝑄 ∧ (𝑧 + (𝑙 · 𝑇)) ∈ ran 𝑄) ↔ ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑦 + (𝑗 · 𝑇)) ∈ ran 𝑄 ∧ (𝑧 + (𝑘 · 𝑇)) ∈ ran 𝑄))
7372anbi2i 729 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 < 𝑧)) ∧ ∃𝑖 ∈ ℤ ∃𝑙 ∈ ℤ ((𝑦 + (𝑖 · 𝑇)) ∈ ran 𝑄 ∧ (𝑧 + (𝑙 · 𝑇)) ∈ ran 𝑄)) ↔ ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 < 𝑧)) ∧ ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑦 + (𝑗 · 𝑇)) ∈ ran 𝑄 ∧ (𝑧 + (𝑘 · 𝑇)) ∈ ran 𝑄)))
7417, 18, 19, 20, 23, 35, 46, 52, 53, 54, 55, 56, 4, 57, 58, 59, 63, 73fourierdlem42 39699 . . . . . . . . . 10 (𝜑 → {𝑥 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄} ∈ Fin)
75 unfi 8179 . . . . . . . . . 10 (({𝐶, 𝐷} ∈ Fin ∧ {𝑥 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄} ∈ Fin) → ({𝐶, 𝐷} ∪ {𝑥 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄}) ∈ Fin)
7612, 74, 75sylancr 694 . . . . . . . . 9 (𝜑 → ({𝐶, 𝐷} ∪ {𝑥 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄}) ∈ Fin)
778, 76syl5eqel 2702 . . . . . . . 8 (𝜑𝐻 ∈ Fin)
78 hashnncl 13105 . . . . . . . 8 (𝐻 ∈ Fin → ((#‘𝐻) ∈ ℕ ↔ 𝐻 ≠ ∅))
7977, 78syl 17 . . . . . . 7 (𝜑 → ((#‘𝐻) ∈ ℕ ↔ 𝐻 ≠ ∅))
8011, 79mpbird 247 . . . . . 6 (𝜑 → (#‘𝐻) ∈ ℕ)
8180nnzd 11433 . . . . 5 (𝜑 → (#‘𝐻) ∈ ℤ)
82 fourierdlem54.cd . . . . . . . . 9 (𝜑𝐶 < 𝐷)
834, 82ltned 10125 . . . . . . . 8 (𝜑𝐶𝐷)
84 hashprg 13130 . . . . . . . . 9 ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) → (𝐶𝐷 ↔ (#‘{𝐶, 𝐷}) = 2))
854, 57, 84syl2anc 692 . . . . . . . 8 (𝜑 → (𝐶𝐷 ↔ (#‘{𝐶, 𝐷}) = 2))
8683, 85mpbid 222 . . . . . . 7 (𝜑 → (#‘{𝐶, 𝐷}) = 2)
8786eqcomd 2627 . . . . . 6 (𝜑 → 2 = (#‘{𝐶, 𝐷}))
88 ssun1 3759 . . . . . . . . 9 {𝐶, 𝐷} ⊆ ({𝐶, 𝐷} ∪ {𝑥 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄})
8988a1i 11 . . . . . . . 8 (𝜑 → {𝐶, 𝐷} ⊆ ({𝐶, 𝐷} ∪ {𝑥 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄}))
9089, 8syl6sseqr 3636 . . . . . . 7 (𝜑 → {𝐶, 𝐷} ⊆ 𝐻)
91 hashssle 39007 . . . . . . 7 ((𝐻 ∈ Fin ∧ {𝐶, 𝐷} ⊆ 𝐻) → (#‘{𝐶, 𝐷}) ≤ (#‘𝐻))
9277, 90, 91syl2anc 692 . . . . . 6 (𝜑 → (#‘{𝐶, 𝐷}) ≤ (#‘𝐻))
9387, 92eqbrtrd 4640 . . . . 5 (𝜑 → 2 ≤ (#‘𝐻))
94 eluz2 11645 . . . . 5 ((#‘𝐻) ∈ (ℤ‘2) ↔ (2 ∈ ℤ ∧ (#‘𝐻) ∈ ℤ ∧ 2 ≤ (#‘𝐻)))
953, 81, 93, 94syl3anbrc 1244 . . . 4 (𝜑 → (#‘𝐻) ∈ (ℤ‘2))
96 uz2m1nn 11715 . . . 4 ((#‘𝐻) ∈ (ℤ‘2) → ((#‘𝐻) − 1) ∈ ℕ)
9795, 96syl 17 . . 3 (𝜑 → ((#‘𝐻) − 1) ∈ ℕ)
981, 97syl5eqel 2702 . 2 (𝜑𝑁 ∈ ℕ)
99 prssg 4323 . . . . . . . . . . . . 13 ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) → ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ↔ {𝐶, 𝐷} ⊆ ℝ))
1004, 57, 99syl2anc 692 . . . . . . . . . . . 12 (𝜑 → ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ↔ {𝐶, 𝐷} ⊆ ℝ))
1014, 57, 100mpbi2and 955 . . . . . . . . . . 11 (𝜑 → {𝐶, 𝐷} ⊆ ℝ)
102 ssrab2 3671 . . . . . . . . . . . 12 {𝑥 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄} ⊆ (𝐶[,]𝐷)
1034, 57iccssred 39169 . . . . . . . . . . . 12 (𝜑 → (𝐶[,]𝐷) ⊆ ℝ)
104102, 103syl5ss 3598 . . . . . . . . . . 11 (𝜑 → {𝑥 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄} ⊆ ℝ)
105101, 104unssd 3772 . . . . . . . . . 10 (𝜑 → ({𝐶, 𝐷} ∪ {𝑥 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄}) ⊆ ℝ)
1068, 105syl5eqss 3633 . . . . . . . . 9 (𝜑𝐻 ⊆ ℝ)
107 fourierdlem54.s . . . . . . . . 9 𝑆 = (℩𝑓𝑓 Isom < , < ((0...𝑁), 𝐻))
10877, 106, 107, 1fourierdlem36 39693 . . . . . . . 8 (𝜑𝑆 Isom < , < ((0...𝑁), 𝐻))
109 df-isom 5861 . . . . . . . 8 (𝑆 Isom < , < ((0...𝑁), 𝐻) ↔ (𝑆:(0...𝑁)–1-1-onto𝐻 ∧ ∀𝑥 ∈ (0...𝑁)∀𝑦 ∈ (0...𝑁)(𝑥 < 𝑦 ↔ (𝑆𝑥) < (𝑆𝑦))))
110108, 109sylib 208 . . . . . . 7 (𝜑 → (𝑆:(0...𝑁)–1-1-onto𝐻 ∧ ∀𝑥 ∈ (0...𝑁)∀𝑦 ∈ (0...𝑁)(𝑥 < 𝑦 ↔ (𝑆𝑥) < (𝑆𝑦))))
111110simpld 475 . . . . . 6 (𝜑𝑆:(0...𝑁)–1-1-onto𝐻)
112 f1of 6099 . . . . . 6 (𝑆:(0...𝑁)–1-1-onto𝐻𝑆:(0...𝑁)⟶𝐻)
113111, 112syl 17 . . . . 5 (𝜑𝑆:(0...𝑁)⟶𝐻)
114113, 106fssd 6019 . . . 4 (𝜑𝑆:(0...𝑁)⟶ℝ)
115 reex 9979 . . . . 5 ℝ ∈ V
116 ovex 6638 . . . . . 6 (0...𝑁) ∈ V
117116a1i 11 . . . . 5 (𝜑 → (0...𝑁) ∈ V)
118 elmapg 7822 . . . . 5 ((ℝ ∈ V ∧ (0...𝑁) ∈ V) → (𝑆 ∈ (ℝ ↑𝑚 (0...𝑁)) ↔ 𝑆:(0...𝑁)⟶ℝ))
119115, 117, 118sylancr 694 . . . 4 (𝜑 → (𝑆 ∈ (ℝ ↑𝑚 (0...𝑁)) ↔ 𝑆:(0...𝑁)⟶ℝ))
120114, 119mpbird 247 . . 3 (𝜑𝑆 ∈ (ℝ ↑𝑚 (0...𝑁)))
121 df-f1o 5859 . . . . . . . . . . 11 (𝑆:(0...𝑁)–1-1-onto𝐻 ↔ (𝑆:(0...𝑁)–1-1𝐻𝑆:(0...𝑁)–onto𝐻))
122111, 121sylib 208 . . . . . . . . . 10 (𝜑 → (𝑆:(0...𝑁)–1-1𝐻𝑆:(0...𝑁)–onto𝐻))
123122simprd 479 . . . . . . . . 9 (𝜑𝑆:(0...𝑁)–onto𝐻)
124 dffo3 6335 . . . . . . . . 9 (𝑆:(0...𝑁)–onto𝐻 ↔ (𝑆:(0...𝑁)⟶𝐻 ∧ ∀𝐻𝑦 ∈ (0...𝑁) = (𝑆𝑦)))
125123, 124sylib 208 . . . . . . . 8 (𝜑 → (𝑆:(0...𝑁)⟶𝐻 ∧ ∀𝐻𝑦 ∈ (0...𝑁) = (𝑆𝑦)))
126125simprd 479 . . . . . . 7 (𝜑 → ∀𝐻𝑦 ∈ (0...𝑁) = (𝑆𝑦))
127 eqeq1 2625 . . . . . . . . . 10 ( = 𝐶 → ( = (𝑆𝑦) ↔ 𝐶 = (𝑆𝑦)))
128 eqcom 2628 . . . . . . . . . 10 (𝐶 = (𝑆𝑦) ↔ (𝑆𝑦) = 𝐶)
129127, 128syl6bb 276 . . . . . . . . 9 ( = 𝐶 → ( = (𝑆𝑦) ↔ (𝑆𝑦) = 𝐶))
130129rexbidv 3046 . . . . . . . 8 ( = 𝐶 → (∃𝑦 ∈ (0...𝑁) = (𝑆𝑦) ↔ ∃𝑦 ∈ (0...𝑁)(𝑆𝑦) = 𝐶))
131130rspcv 3294 . . . . . . 7 (𝐶𝐻 → (∀𝐻𝑦 ∈ (0...𝑁) = (𝑆𝑦) → ∃𝑦 ∈ (0...𝑁)(𝑆𝑦) = 𝐶))
1329, 126, 131sylc 65 . . . . . 6 (𝜑 → ∃𝑦 ∈ (0...𝑁)(𝑆𝑦) = 𝐶)
133 fveq2 6153 . . . . . . . . . . . . . 14 (𝑦 = 0 → (𝑆𝑦) = (𝑆‘0))
134133eqcomd 2627 . . . . . . . . . . . . 13 (𝑦 = 0 → (𝑆‘0) = (𝑆𝑦))
135134adantl 482 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑆𝑦) = 𝐶) ∧ 𝑦 = 0) → (𝑆‘0) = (𝑆𝑦))
136 simplr 791 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑆𝑦) = 𝐶) ∧ 𝑦 = 0) → (𝑆𝑦) = 𝐶)
137135, 136eqtrd 2655 . . . . . . . . . . 11 (((𝜑 ∧ (𝑆𝑦) = 𝐶) ∧ 𝑦 = 0) → (𝑆‘0) = 𝐶)
1384ad2antrr 761 . . . . . . . . . . 11 (((𝜑 ∧ (𝑆𝑦) = 𝐶) ∧ 𝑦 = 0) → 𝐶 ∈ ℝ)
139137, 138eqeltrd 2698 . . . . . . . . . 10 (((𝜑 ∧ (𝑆𝑦) = 𝐶) ∧ 𝑦 = 0) → (𝑆‘0) ∈ ℝ)
140139, 137eqled 10092 . . . . . . . . 9 (((𝜑 ∧ (𝑆𝑦) = 𝐶) ∧ 𝑦 = 0) → (𝑆‘0) ≤ 𝐶)
1411403adantl2 1216 . . . . . . . 8 (((𝜑𝑦 ∈ (0...𝑁) ∧ (𝑆𝑦) = 𝐶) ∧ 𝑦 = 0) → (𝑆‘0) ≤ 𝐶)
1424rexrd 10041 . . . . . . . . . . . . . . . . 17 (𝜑𝐶 ∈ ℝ*)
14357rexrd 10041 . . . . . . . . . . . . . . . . 17 (𝜑𝐷 ∈ ℝ*)
1444, 57, 82ltled 10137 . . . . . . . . . . . . . . . . 17 (𝜑𝐶𝐷)
145 lbicc2 12238 . . . . . . . . . . . . . . . . 17 ((𝐶 ∈ ℝ*𝐷 ∈ ℝ*𝐶𝐷) → 𝐶 ∈ (𝐶[,]𝐷))
146142, 143, 144, 145syl3anc 1323 . . . . . . . . . . . . . . . 16 (𝜑𝐶 ∈ (𝐶[,]𝐷))
147 ubicc2 12239 . . . . . . . . . . . . . . . . 17 ((𝐶 ∈ ℝ*𝐷 ∈ ℝ*𝐶𝐷) → 𝐷 ∈ (𝐶[,]𝐷))
148142, 143, 144, 147syl3anc 1323 . . . . . . . . . . . . . . . 16 (𝜑𝐷 ∈ (𝐶[,]𝐷))
149 prssg 4323 . . . . . . . . . . . . . . . . 17 ((𝐶 ∈ (𝐶[,]𝐷) ∧ 𝐷 ∈ (𝐶[,]𝐷)) → ((𝐶 ∈ (𝐶[,]𝐷) ∧ 𝐷 ∈ (𝐶[,]𝐷)) ↔ {𝐶, 𝐷} ⊆ (𝐶[,]𝐷)))
150146, 148, 149syl2anc 692 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐶 ∈ (𝐶[,]𝐷) ∧ 𝐷 ∈ (𝐶[,]𝐷)) ↔ {𝐶, 𝐷} ⊆ (𝐶[,]𝐷)))
151146, 148, 150mpbi2and 955 . . . . . . . . . . . . . . 15 (𝜑 → {𝐶, 𝐷} ⊆ (𝐶[,]𝐷))
152102a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → {𝑥 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄} ⊆ (𝐶[,]𝐷))
153151, 152unssd 3772 . . . . . . . . . . . . . 14 (𝜑 → ({𝐶, 𝐷} ∪ {𝑥 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄}) ⊆ (𝐶[,]𝐷))
1548, 153syl5eqss 3633 . . . . . . . . . . . . 13 (𝜑𝐻 ⊆ (𝐶[,]𝐷))
155 nnm1nn0 11286 . . . . . . . . . . . . . . . . . 18 ((#‘𝐻) ∈ ℕ → ((#‘𝐻) − 1) ∈ ℕ0)
15680, 155syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → ((#‘𝐻) − 1) ∈ ℕ0)
1571, 156syl5eqel 2702 . . . . . . . . . . . . . . . 16 (𝜑𝑁 ∈ ℕ0)
158157, 40syl6eleq 2708 . . . . . . . . . . . . . . 15 (𝜑𝑁 ∈ (ℤ‘0))
159 eluzfz1 12298 . . . . . . . . . . . . . . 15 (𝑁 ∈ (ℤ‘0) → 0 ∈ (0...𝑁))
160158, 159syl 17 . . . . . . . . . . . . . 14 (𝜑 → 0 ∈ (0...𝑁))
161113, 160ffvelrnd 6321 . . . . . . . . . . . . 13 (𝜑 → (𝑆‘0) ∈ 𝐻)
162154, 161sseldd 3588 . . . . . . . . . . . 12 (𝜑 → (𝑆‘0) ∈ (𝐶[,]𝐷))
163103, 162sseldd 3588 . . . . . . . . . . 11 (𝜑 → (𝑆‘0) ∈ ℝ)
164163adantr 481 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝑦 = 0) → (𝑆‘0) ∈ ℝ)
1651643ad2antl1 1221 . . . . . . . . 9 (((𝜑𝑦 ∈ (0...𝑁) ∧ (𝑆𝑦) = 𝐶) ∧ ¬ 𝑦 = 0) → (𝑆‘0) ∈ ℝ)
1664adantr 481 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝑦 = 0) → 𝐶 ∈ ℝ)
1671663ad2antl1 1221 . . . . . . . . 9 (((𝜑𝑦 ∈ (0...𝑁) ∧ (𝑆𝑦) = 𝐶) ∧ ¬ 𝑦 = 0) → 𝐶 ∈ ℝ)
168 elfzelz 12292 . . . . . . . . . . . . . . 15 (𝑦 ∈ (0...𝑁) → 𝑦 ∈ ℤ)
169168zred 11434 . . . . . . . . . . . . . 14 (𝑦 ∈ (0...𝑁) → 𝑦 ∈ ℝ)
170169adantr 481 . . . . . . . . . . . . 13 ((𝑦 ∈ (0...𝑁) ∧ ¬ 𝑦 = 0) → 𝑦 ∈ ℝ)
171 elfzle1 12294 . . . . . . . . . . . . . 14 (𝑦 ∈ (0...𝑁) → 0 ≤ 𝑦)
172171adantr 481 . . . . . . . . . . . . 13 ((𝑦 ∈ (0...𝑁) ∧ ¬ 𝑦 = 0) → 0 ≤ 𝑦)
173 neqne 2798 . . . . . . . . . . . . . 14 𝑦 = 0 → 𝑦 ≠ 0)
174173adantl 482 . . . . . . . . . . . . 13 ((𝑦 ∈ (0...𝑁) ∧ ¬ 𝑦 = 0) → 𝑦 ≠ 0)
175170, 172, 174ne0gt0d 10126 . . . . . . . . . . . 12 ((𝑦 ∈ (0...𝑁) ∧ ¬ 𝑦 = 0) → 0 < 𝑦)
1761753ad2antl2 1222 . . . . . . . . . . 11 (((𝜑𝑦 ∈ (0...𝑁) ∧ (𝑆𝑦) = 𝐶) ∧ ¬ 𝑦 = 0) → 0 < 𝑦)
177 simpl1 1062 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ (0...𝑁) ∧ (𝑆𝑦) = 𝐶) ∧ ¬ 𝑦 = 0) → 𝜑)
178 simpl2 1063 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ (0...𝑁) ∧ (𝑆𝑦) = 𝐶) ∧ ¬ 𝑦 = 0) → 𝑦 ∈ (0...𝑁))
179110simprd 479 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑥 ∈ (0...𝑁)∀𝑦 ∈ (0...𝑁)(𝑥 < 𝑦 ↔ (𝑆𝑥) < (𝑆𝑦)))
180 breq1 4621 . . . . . . . . . . . . . . . . 17 (𝑥 = 0 → (𝑥 < 𝑦 ↔ 0 < 𝑦))
181 fveq2 6153 . . . . . . . . . . . . . . . . . 18 (𝑥 = 0 → (𝑆𝑥) = (𝑆‘0))
182181breq1d 4628 . . . . . . . . . . . . . . . . 17 (𝑥 = 0 → ((𝑆𝑥) < (𝑆𝑦) ↔ (𝑆‘0) < (𝑆𝑦)))
183180, 182bibi12d 335 . . . . . . . . . . . . . . . 16 (𝑥 = 0 → ((𝑥 < 𝑦 ↔ (𝑆𝑥) < (𝑆𝑦)) ↔ (0 < 𝑦 ↔ (𝑆‘0) < (𝑆𝑦))))
184183ralbidv 2981 . . . . . . . . . . . . . . 15 (𝑥 = 0 → (∀𝑦 ∈ (0...𝑁)(𝑥 < 𝑦 ↔ (𝑆𝑥) < (𝑆𝑦)) ↔ ∀𝑦 ∈ (0...𝑁)(0 < 𝑦 ↔ (𝑆‘0) < (𝑆𝑦))))
185184rspcv 3294 . . . . . . . . . . . . . 14 (0 ∈ (0...𝑁) → (∀𝑥 ∈ (0...𝑁)∀𝑦 ∈ (0...𝑁)(𝑥 < 𝑦 ↔ (𝑆𝑥) < (𝑆𝑦)) → ∀𝑦 ∈ (0...𝑁)(0 < 𝑦 ↔ (𝑆‘0) < (𝑆𝑦))))
186160, 179, 185sylc 65 . . . . . . . . . . . . 13 (𝜑 → ∀𝑦 ∈ (0...𝑁)(0 < 𝑦 ↔ (𝑆‘0) < (𝑆𝑦)))
187186r19.21bi 2927 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (0...𝑁)) → (0 < 𝑦 ↔ (𝑆‘0) < (𝑆𝑦)))
188177, 178, 187syl2anc 692 . . . . . . . . . . 11 (((𝜑𝑦 ∈ (0...𝑁) ∧ (𝑆𝑦) = 𝐶) ∧ ¬ 𝑦 = 0) → (0 < 𝑦 ↔ (𝑆‘0) < (𝑆𝑦)))
189176, 188mpbid 222 . . . . . . . . . 10 (((𝜑𝑦 ∈ (0...𝑁) ∧ (𝑆𝑦) = 𝐶) ∧ ¬ 𝑦 = 0) → (𝑆‘0) < (𝑆𝑦))
190 simpl3 1064 . . . . . . . . . 10 (((𝜑𝑦 ∈ (0...𝑁) ∧ (𝑆𝑦) = 𝐶) ∧ ¬ 𝑦 = 0) → (𝑆𝑦) = 𝐶)
191189, 190breqtrd 4644 . . . . . . . . 9 (((𝜑𝑦 ∈ (0...𝑁) ∧ (𝑆𝑦) = 𝐶) ∧ ¬ 𝑦 = 0) → (𝑆‘0) < 𝐶)
192165, 167, 191ltled 10137 . . . . . . . 8 (((𝜑𝑦 ∈ (0...𝑁) ∧ (𝑆𝑦) = 𝐶) ∧ ¬ 𝑦 = 0) → (𝑆‘0) ≤ 𝐶)
193141, 192pm2.61dan 831 . . . . . . 7 ((𝜑𝑦 ∈ (0...𝑁) ∧ (𝑆𝑦) = 𝐶) → (𝑆‘0) ≤ 𝐶)
194193rexlimdv3a 3027 . . . . . 6 (𝜑 → (∃𝑦 ∈ (0...𝑁)(𝑆𝑦) = 𝐶 → (𝑆‘0) ≤ 𝐶))
195132, 194mpd 15 . . . . 5 (𝜑 → (𝑆‘0) ≤ 𝐶)
196 elicc2 12188 . . . . . . . 8 ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) → ((𝑆‘0) ∈ (𝐶[,]𝐷) ↔ ((𝑆‘0) ∈ ℝ ∧ 𝐶 ≤ (𝑆‘0) ∧ (𝑆‘0) ≤ 𝐷)))
1974, 57, 196syl2anc 692 . . . . . . 7 (𝜑 → ((𝑆‘0) ∈ (𝐶[,]𝐷) ↔ ((𝑆‘0) ∈ ℝ ∧ 𝐶 ≤ (𝑆‘0) ∧ (𝑆‘0) ≤ 𝐷)))
198162, 197mpbid 222 . . . . . 6 (𝜑 → ((𝑆‘0) ∈ ℝ ∧ 𝐶 ≤ (𝑆‘0) ∧ (𝑆‘0) ≤ 𝐷))
199198simp2d 1072 . . . . 5 (𝜑𝐶 ≤ (𝑆‘0))
200163, 4letri3d 10131 . . . . 5 (𝜑 → ((𝑆‘0) = 𝐶 ↔ ((𝑆‘0) ≤ 𝐶𝐶 ≤ (𝑆‘0))))
201195, 199, 200mpbir2and 956 . . . 4 (𝜑 → (𝑆‘0) = 𝐶)
202 eluzfz2 12299 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘0) → 𝑁 ∈ (0...𝑁))
203158, 202syl 17 . . . . . . . . 9 (𝜑𝑁 ∈ (0...𝑁))
204113, 203ffvelrnd 6321 . . . . . . . 8 (𝜑 → (𝑆𝑁) ∈ 𝐻)
205154, 204sseldd 3588 . . . . . . 7 (𝜑 → (𝑆𝑁) ∈ (𝐶[,]𝐷))
206 elicc2 12188 . . . . . . . 8 ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) → ((𝑆𝑁) ∈ (𝐶[,]𝐷) ↔ ((𝑆𝑁) ∈ ℝ ∧ 𝐶 ≤ (𝑆𝑁) ∧ (𝑆𝑁) ≤ 𝐷)))
2074, 57, 206syl2anc 692 . . . . . . 7 (𝜑 → ((𝑆𝑁) ∈ (𝐶[,]𝐷) ↔ ((𝑆𝑁) ∈ ℝ ∧ 𝐶 ≤ (𝑆𝑁) ∧ (𝑆𝑁) ≤ 𝐷)))
208205, 207mpbid 222 . . . . . 6 (𝜑 → ((𝑆𝑁) ∈ ℝ ∧ 𝐶 ≤ (𝑆𝑁) ∧ (𝑆𝑁) ≤ 𝐷))
209208simp3d 1073 . . . . 5 (𝜑 → (𝑆𝑁) ≤ 𝐷)
210 prid2g 4271 . . . . . . . . 9 (𝐷 ∈ ℝ → 𝐷 ∈ {𝐶, 𝐷})
211 elun1 3763 . . . . . . . . 9 (𝐷 ∈ {𝐶, 𝐷} → 𝐷 ∈ ({𝐶, 𝐷} ∪ {𝑥 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄}))
21257, 210, 2113syl 18 . . . . . . . 8 (𝜑𝐷 ∈ ({𝐶, 𝐷} ∪ {𝑥 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄}))
213212, 8syl6eleqr 2709 . . . . . . 7 (𝜑𝐷𝐻)
214 eqeq1 2625 . . . . . . . . . 10 ( = 𝐷 → ( = (𝑆𝑦) ↔ 𝐷 = (𝑆𝑦)))
215 eqcom 2628 . . . . . . . . . 10 (𝐷 = (𝑆𝑦) ↔ (𝑆𝑦) = 𝐷)
216214, 215syl6bb 276 . . . . . . . . 9 ( = 𝐷 → ( = (𝑆𝑦) ↔ (𝑆𝑦) = 𝐷))
217216rexbidv 3046 . . . . . . . 8 ( = 𝐷 → (∃𝑦 ∈ (0...𝑁) = (𝑆𝑦) ↔ ∃𝑦 ∈ (0...𝑁)(𝑆𝑦) = 𝐷))
218217rspcv 3294 . . . . . . 7 (𝐷𝐻 → (∀𝐻𝑦 ∈ (0...𝑁) = (𝑆𝑦) → ∃𝑦 ∈ (0...𝑁)(𝑆𝑦) = 𝐷))
219213, 126, 218sylc 65 . . . . . 6 (𝜑 → ∃𝑦 ∈ (0...𝑁)(𝑆𝑦) = 𝐷)
220215biimpri 218 . . . . . . . . 9 ((𝑆𝑦) = 𝐷𝐷 = (𝑆𝑦))
2212203ad2ant3 1082 . . . . . . . 8 ((𝜑𝑦 ∈ (0...𝑁) ∧ (𝑆𝑦) = 𝐷) → 𝐷 = (𝑆𝑦))
222114ffvelrnda 6320 . . . . . . . . . 10 ((𝜑𝑦 ∈ (0...𝑁)) → (𝑆𝑦) ∈ ℝ)
223103, 205sseldd 3588 . . . . . . . . . . 11 (𝜑 → (𝑆𝑁) ∈ ℝ)
224223adantr 481 . . . . . . . . . 10 ((𝜑𝑦 ∈ (0...𝑁)) → (𝑆𝑁) ∈ ℝ)
225169adantl 482 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (0...𝑁)) → 𝑦 ∈ ℝ)
226 elfzel2 12290 . . . . . . . . . . . . . 14 (𝑦 ∈ (0...𝑁) → 𝑁 ∈ ℤ)
227226zred 11434 . . . . . . . . . . . . 13 (𝑦 ∈ (0...𝑁) → 𝑁 ∈ ℝ)
228227adantl 482 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (0...𝑁)) → 𝑁 ∈ ℝ)
229 elfzle2 12295 . . . . . . . . . . . . 13 (𝑦 ∈ (0...𝑁) → 𝑦𝑁)
230229adantl 482 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (0...𝑁)) → 𝑦𝑁)
231225, 228, 230lensymd 10140 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (0...𝑁)) → ¬ 𝑁 < 𝑦)
232 breq1 4621 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑁 → (𝑥 < 𝑦𝑁 < 𝑦))
233 fveq2 6153 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑁 → (𝑆𝑥) = (𝑆𝑁))
234233breq1d 4628 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑁 → ((𝑆𝑥) < (𝑆𝑦) ↔ (𝑆𝑁) < (𝑆𝑦)))
235232, 234bibi12d 335 . . . . . . . . . . . . . . 15 (𝑥 = 𝑁 → ((𝑥 < 𝑦 ↔ (𝑆𝑥) < (𝑆𝑦)) ↔ (𝑁 < 𝑦 ↔ (𝑆𝑁) < (𝑆𝑦))))
236235ralbidv 2981 . . . . . . . . . . . . . 14 (𝑥 = 𝑁 → (∀𝑦 ∈ (0...𝑁)(𝑥 < 𝑦 ↔ (𝑆𝑥) < (𝑆𝑦)) ↔ ∀𝑦 ∈ (0...𝑁)(𝑁 < 𝑦 ↔ (𝑆𝑁) < (𝑆𝑦))))
237236rspcv 3294 . . . . . . . . . . . . 13 (𝑁 ∈ (0...𝑁) → (∀𝑥 ∈ (0...𝑁)∀𝑦 ∈ (0...𝑁)(𝑥 < 𝑦 ↔ (𝑆𝑥) < (𝑆𝑦)) → ∀𝑦 ∈ (0...𝑁)(𝑁 < 𝑦 ↔ (𝑆𝑁) < (𝑆𝑦))))
238203, 179, 237sylc 65 . . . . . . . . . . . 12 (𝜑 → ∀𝑦 ∈ (0...𝑁)(𝑁 < 𝑦 ↔ (𝑆𝑁) < (𝑆𝑦)))
239238r19.21bi 2927 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (0...𝑁)) → (𝑁 < 𝑦 ↔ (𝑆𝑁) < (𝑆𝑦)))
240231, 239mtbid 314 . . . . . . . . . 10 ((𝜑𝑦 ∈ (0...𝑁)) → ¬ (𝑆𝑁) < (𝑆𝑦))
241222, 224, 240nltled 10139 . . . . . . . . 9 ((𝜑𝑦 ∈ (0...𝑁)) → (𝑆𝑦) ≤ (𝑆𝑁))
2422413adant3 1079 . . . . . . . 8 ((𝜑𝑦 ∈ (0...𝑁) ∧ (𝑆𝑦) = 𝐷) → (𝑆𝑦) ≤ (𝑆𝑁))
243221, 242eqbrtrd 4640 . . . . . . 7 ((𝜑𝑦 ∈ (0...𝑁) ∧ (𝑆𝑦) = 𝐷) → 𝐷 ≤ (𝑆𝑁))
244243rexlimdv3a 3027 . . . . . 6 (𝜑 → (∃𝑦 ∈ (0...𝑁)(𝑆𝑦) = 𝐷𝐷 ≤ (𝑆𝑁)))
245219, 244mpd 15 . . . . 5 (𝜑𝐷 ≤ (𝑆𝑁))
246223, 57letri3d 10131 . . . . 5 (𝜑 → ((𝑆𝑁) = 𝐷 ↔ ((𝑆𝑁) ≤ 𝐷𝐷 ≤ (𝑆𝑁))))
247209, 245, 246mpbir2and 956 . . . 4 (𝜑 → (𝑆𝑁) = 𝐷)
248 elfzoelz 12419 . . . . . . . . 9 (𝑖 ∈ (0..^𝑁) → 𝑖 ∈ ℤ)
249248zred 11434 . . . . . . . 8 (𝑖 ∈ (0..^𝑁) → 𝑖 ∈ ℝ)
250249ltp1d 10906 . . . . . . 7 (𝑖 ∈ (0..^𝑁) → 𝑖 < (𝑖 + 1))
251250adantl 482 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑁)) → 𝑖 < (𝑖 + 1))
252179adantr 481 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑁)) → ∀𝑥 ∈ (0...𝑁)∀𝑦 ∈ (0...𝑁)(𝑥 < 𝑦 ↔ (𝑆𝑥) < (𝑆𝑦)))
253 elfzofz 12434 . . . . . . . . 9 (𝑖 ∈ (0..^𝑁) → 𝑖 ∈ (0...𝑁))
254253adantl 482 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑁)) → 𝑖 ∈ (0...𝑁))
255 fzofzp1 12514 . . . . . . . . 9 (𝑖 ∈ (0..^𝑁) → (𝑖 + 1) ∈ (0...𝑁))
256255adantl 482 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑁)) → (𝑖 + 1) ∈ (0...𝑁))
257 breq1 4621 . . . . . . . . . 10 (𝑥 = 𝑖 → (𝑥 < 𝑦𝑖 < 𝑦))
258 fveq2 6153 . . . . . . . . . . 11 (𝑥 = 𝑖 → (𝑆𝑥) = (𝑆𝑖))
259258breq1d 4628 . . . . . . . . . 10 (𝑥 = 𝑖 → ((𝑆𝑥) < (𝑆𝑦) ↔ (𝑆𝑖) < (𝑆𝑦)))
260257, 259bibi12d 335 . . . . . . . . 9 (𝑥 = 𝑖 → ((𝑥 < 𝑦 ↔ (𝑆𝑥) < (𝑆𝑦)) ↔ (𝑖 < 𝑦 ↔ (𝑆𝑖) < (𝑆𝑦))))
261 breq2 4622 . . . . . . . . . 10 (𝑦 = (𝑖 + 1) → (𝑖 < 𝑦𝑖 < (𝑖 + 1)))
262 fveq2 6153 . . . . . . . . . . 11 (𝑦 = (𝑖 + 1) → (𝑆𝑦) = (𝑆‘(𝑖 + 1)))
263262breq2d 4630 . . . . . . . . . 10 (𝑦 = (𝑖 + 1) → ((𝑆𝑖) < (𝑆𝑦) ↔ (𝑆𝑖) < (𝑆‘(𝑖 + 1))))
264261, 263bibi12d 335 . . . . . . . . 9 (𝑦 = (𝑖 + 1) → ((𝑖 < 𝑦 ↔ (𝑆𝑖) < (𝑆𝑦)) ↔ (𝑖 < (𝑖 + 1) ↔ (𝑆𝑖) < (𝑆‘(𝑖 + 1)))))
265260, 264rspc2v 3310 . . . . . . . 8 ((𝑖 ∈ (0...𝑁) ∧ (𝑖 + 1) ∈ (0...𝑁)) → (∀𝑥 ∈ (0...𝑁)∀𝑦 ∈ (0...𝑁)(𝑥 < 𝑦 ↔ (𝑆𝑥) < (𝑆𝑦)) → (𝑖 < (𝑖 + 1) ↔ (𝑆𝑖) < (𝑆‘(𝑖 + 1)))))
266254, 256, 265syl2anc 692 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑁)) → (∀𝑥 ∈ (0...𝑁)∀𝑦 ∈ (0...𝑁)(𝑥 < 𝑦 ↔ (𝑆𝑥) < (𝑆𝑦)) → (𝑖 < (𝑖 + 1) ↔ (𝑆𝑖) < (𝑆‘(𝑖 + 1)))))
267252, 266mpd 15 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑁)) → (𝑖 < (𝑖 + 1) ↔ (𝑆𝑖) < (𝑆‘(𝑖 + 1))))
268251, 267mpbid 222 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑁)) → (𝑆𝑖) < (𝑆‘(𝑖 + 1)))
269268ralrimiva 2961 . . . 4 (𝜑 → ∀𝑖 ∈ (0..^𝑁)(𝑆𝑖) < (𝑆‘(𝑖 + 1)))
270201, 247, 269jca31 556 . . 3 (𝜑 → (((𝑆‘0) = 𝐶 ∧ (𝑆𝑁) = 𝐷) ∧ ∀𝑖 ∈ (0..^𝑁)(𝑆𝑖) < (𝑆‘(𝑖 + 1))))
271 fourierdlem54.o . . . . 5 𝑂 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = 𝐶 ∧ (𝑝𝑚) = 𝐷) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
272271fourierdlem2 39659 . . . 4 (𝑁 ∈ ℕ → (𝑆 ∈ (𝑂𝑁) ↔ (𝑆 ∈ (ℝ ↑𝑚 (0...𝑁)) ∧ (((𝑆‘0) = 𝐶 ∧ (𝑆𝑁) = 𝐷) ∧ ∀𝑖 ∈ (0..^𝑁)(𝑆𝑖) < (𝑆‘(𝑖 + 1))))))
27398, 272syl 17 . . 3 (𝜑 → (𝑆 ∈ (𝑂𝑁) ↔ (𝑆 ∈ (ℝ ↑𝑚 (0...𝑁)) ∧ (((𝑆‘0) = 𝐶 ∧ (𝑆𝑁) = 𝐷) ∧ ∀𝑖 ∈ (0..^𝑁)(𝑆𝑖) < (𝑆‘(𝑖 + 1))))))
274120, 270, 273mpbir2and 956 . 2 (𝜑𝑆 ∈ (𝑂𝑁))
27598, 274, 108jca31 556 1 (𝜑 → ((𝑁 ∈ ℕ ∧ 𝑆 ∈ (𝑂𝑁)) ∧ 𝑆 Isom < , < ((0...𝑁), 𝐻)))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 196   ∧ wa 384   ∧ w3a 1036   = wceq 1480   ∈ wcel 1987   ≠ wne 2790  ∀wral 2907  ∃wrex 2908  {crab 2911  Vcvv 3189   ∖ cdif 3556   ∪ cun 3557   ⊆ wss 3559  ∅c0 3896  {cpr 4155   class class class wbr 4618   ↦ cmpt 4678   I cid 4989   × cxp 5077  ran crn 5080   ↾ cres 5081   ∘ ccom 5083  ℩cio 5813   Fn wfn 5847  ⟶wf 5848  –1-1→wf1 5849  –onto→wfo 5850  –1-1-onto→wf1o 5851  ‘cfv 5852   Isom wiso 5853  (class class class)co 6610   ↑𝑚 cmap 7809  Fincfn 7907  infcinf 8299  ℝcr 9887  0cc0 9888  1c1 9889   + caddc 9891   · cmul 9893  ℝ*cxr 10025   < clt 10026   ≤ cle 10027   − cmin 10218  ℕcn 10972  2c2 11022  ℕ0cn0 11244  ℤcz 11329  ℤ≥cuz 11639  (,)cioo 12125  [,]cicc 12128  ...cfz 12276  ..^cfzo 12414  #chash 13065  abscabs 13916   ↾t crest 16013  topGenctg 16030 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-inf2 8490  ax-cnex 9944  ax-resscn 9945  ax-1cn 9946  ax-icn 9947  ax-addcl 9948  ax-addrcl 9949  ax-mulcl 9950  ax-mulrcl 9951  ax-mulcom 9952  ax-addass 9953  ax-mulass 9954  ax-distr 9955  ax-i2m1 9956  ax-1ne0 9957  ax-1rid 9958  ax-rnegex 9959  ax-rrecex 9960  ax-cnre 9961  ax-pre-lttri 9962  ax-pre-lttrn 9963  ax-pre-ltadd 9964  ax-pre-mulgt0 9965  ax-pre-sup 9966 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-iin 4493  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-se 5039  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-isom 5861  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-om 7020  df-1st 7120  df-2nd 7121  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-1o 7512  df-oadd 7516  df-er 7694  df-map 7811  df-en 7908  df-dom 7909  df-sdom 7910  df-fin 7911  df-fi 8269  df-sup 8300  df-inf 8301  df-oi 8367  df-card 8717  df-cda 8942  df-pnf 10028  df-mnf 10029  df-xr 10030  df-ltxr 10031  df-le 10032  df-sub 10220  df-neg 10221  df-div 10637  df-nn 10973  df-2 11031  df-3 11032  df-n0 11245  df-xnn0 11316  df-z 11330  df-uz 11640  df-q 11741  df-rp 11785  df-xneg 11898  df-xadd 11899  df-xmul 11900  df-ioo 12129  df-icc 12132  df-fz 12277  df-fzo 12415  df-seq 12750  df-exp 12809  df-hash 13066  df-cj 13781  df-re 13782  df-im 13783  df-sqrt 13917  df-abs 13918  df-rest 16015  df-topgen 16036  df-psmet 19670  df-xmet 19671  df-met 19672  df-bl 19673  df-mopn 19674  df-top 20631  df-topon 20648  df-bases 20674  df-cld 20746  df-ntr 20747  df-cls 20748  df-nei 20825  df-lp 20863  df-cmp 21113 This theorem is referenced by:  fourierdlem63  39719  fourierdlem64  39720  fourierdlem65  39721  fourierdlem79  39735  fourierdlem89  39745  fourierdlem90  39746  fourierdlem91  39747  fourierdlem100  39756  fourierdlem107  39763  fourierdlem109  39765  fourierdlem112  39768
 Copyright terms: Public domain W3C validator