Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem57 Structured version   Visualization version   GIF version

Theorem fourierdlem57 39708
Description: The derivative of 𝑂. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem57.f (𝜑𝐹:ℝ⟶ℝ)
fourierdlem57.xre (𝜑𝑋 ∈ ℝ)
fourierdlem57.a (𝜑𝐴 ∈ ℝ)
fourierdlem57.b (𝜑𝐵 ∈ ℝ)
fourierdlem57.fdv (𝜑 → (ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))):((𝑋 + 𝐴)(,)(𝑋 + 𝐵))⟶ℝ)
fourierdlem57.ab (𝜑 → (𝐴(,)𝐵) ⊆ (-π[,]π))
fourierdlem57.n0 (𝜑 → ¬ 0 ∈ (𝐴(,)𝐵))
fourierdlem57.c (𝜑𝐶 ∈ ℝ)
fourierdlem57.o 𝑂 = (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2)))))
Assertion
Ref Expression
fourierdlem57 ((𝜑 → ((ℝ D 𝑂):(𝐴(,)𝐵)⟶ℝ ∧ (ℝ D 𝑂) = (𝑠 ∈ (𝐴(,)𝐵) ↦ (((((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠)) · (2 · (sin‘(𝑠 / 2)))) − ((cos‘(𝑠 / 2)) · ((𝐹‘(𝑋 + 𝑠)) − 𝐶))) / ((2 · (sin‘(𝑠 / 2)))↑2))))) ∧ (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (2 · (sin‘(𝑠 / 2))))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ (cos‘(𝑠 / 2))))
Distinct variable groups:   𝐴,𝑠   𝐵,𝑠   𝐶,𝑠   𝐹,𝑠   𝑋,𝑠   𝜑,𝑠
Allowed substitution hint:   𝑂(𝑠)

Proof of Theorem fourierdlem57
StepHypRef Expression
1 fourierdlem57.fdv . . . . . . . . . 10 (𝜑 → (ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))):((𝑋 + 𝐴)(,)(𝑋 + 𝐵))⟶ℝ)
21adantr 481 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))):((𝑋 + 𝐴)(,)(𝑋 + 𝐵))⟶ℝ)
3 fourierdlem57.xre . . . . . . . . . . . . 13 (𝜑𝑋 ∈ ℝ)
4 fourierdlem57.a . . . . . . . . . . . . 13 (𝜑𝐴 ∈ ℝ)
53, 4readdcld 10020 . . . . . . . . . . . 12 (𝜑 → (𝑋 + 𝐴) ∈ ℝ)
65rexrd 10040 . . . . . . . . . . 11 (𝜑 → (𝑋 + 𝐴) ∈ ℝ*)
76adantr 481 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑋 + 𝐴) ∈ ℝ*)
8 fourierdlem57.b . . . . . . . . . . . . 13 (𝜑𝐵 ∈ ℝ)
93, 8readdcld 10020 . . . . . . . . . . . 12 (𝜑 → (𝑋 + 𝐵) ∈ ℝ)
109rexrd 10040 . . . . . . . . . . 11 (𝜑 → (𝑋 + 𝐵) ∈ ℝ*)
1110adantr 481 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑋 + 𝐵) ∈ ℝ*)
123adantr 481 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑋 ∈ ℝ)
13 elioore 12154 . . . . . . . . . . . 12 (𝑠 ∈ (𝐴(,)𝐵) → 𝑠 ∈ ℝ)
1413adantl 482 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ ℝ)
1512, 14readdcld 10020 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑋 + 𝑠) ∈ ℝ)
164adantr 481 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐴 ∈ ℝ)
1716rexrd 10040 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐴 ∈ ℝ*)
188rexrd 10040 . . . . . . . . . . . . 13 (𝜑𝐵 ∈ ℝ*)
1918adantr 481 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐵 ∈ ℝ*)
20 simpr 477 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ (𝐴(,)𝐵))
21 ioogtlb 39151 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑠 ∈ (𝐴(,)𝐵)) → 𝐴 < 𝑠)
2217, 19, 20, 21syl3anc 1323 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐴 < 𝑠)
2316, 14, 12, 22ltadd2dd 10147 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑋 + 𝐴) < (𝑋 + 𝑠))
248adantr 481 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐵 ∈ ℝ)
25 iooltub 39169 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 < 𝐵)
2617, 19, 20, 25syl3anc 1323 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 < 𝐵)
2714, 24, 12, 26ltadd2dd 10147 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑋 + 𝑠) < (𝑋 + 𝐵))
287, 11, 15, 23, 27eliood 39154 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑋 + 𝑠) ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))
292, 28ffvelrnd 6321 . . . . . . . 8 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠)) ∈ ℝ)
30 2re 11041 . . . . . . . . . 10 2 ∈ ℝ
3130a1i 11 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 2 ∈ ℝ)
32 rehalfcl 11209 . . . . . . . . . . 11 (𝑠 ∈ ℝ → (𝑠 / 2) ∈ ℝ)
3314, 32syl 17 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑠 / 2) ∈ ℝ)
3433resincld 14805 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (sin‘(𝑠 / 2)) ∈ ℝ)
3531, 34remulcld 10021 . . . . . . . 8 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (2 · (sin‘(𝑠 / 2))) ∈ ℝ)
3629, 35remulcld 10021 . . . . . . 7 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠)) · (2 · (sin‘(𝑠 / 2)))) ∈ ℝ)
3733recoscld 14806 . . . . . . . 8 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (cos‘(𝑠 / 2)) ∈ ℝ)
38 fourierdlem57.f . . . . . . . . . . 11 (𝜑𝐹:ℝ⟶ℝ)
3938adantr 481 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐹:ℝ⟶ℝ)
4039, 15ffvelrnd 6321 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝐹‘(𝑋 + 𝑠)) ∈ ℝ)
41 fourierdlem57.c . . . . . . . . . 10 (𝜑𝐶 ∈ ℝ)
4241adantr 481 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐶 ∈ ℝ)
4340, 42resubcld 10409 . . . . . . . 8 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ((𝐹‘(𝑋 + 𝑠)) − 𝐶) ∈ ℝ)
4437, 43remulcld 10021 . . . . . . 7 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ((cos‘(𝑠 / 2)) · ((𝐹‘(𝑋 + 𝑠)) − 𝐶)) ∈ ℝ)
4536, 44resubcld 10409 . . . . . 6 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ((((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠)) · (2 · (sin‘(𝑠 / 2)))) − ((cos‘(𝑠 / 2)) · ((𝐹‘(𝑋 + 𝑠)) − 𝐶))) ∈ ℝ)
4635resqcld 12982 . . . . . 6 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ((2 · (sin‘(𝑠 / 2)))↑2) ∈ ℝ)
47 2cnd 11044 . . . . . . . . 9 (𝑠 ∈ ℝ → 2 ∈ ℂ)
4832recnd 10019 . . . . . . . . . 10 (𝑠 ∈ ℝ → (𝑠 / 2) ∈ ℂ)
4948sincld 14792 . . . . . . . . 9 (𝑠 ∈ ℝ → (sin‘(𝑠 / 2)) ∈ ℂ)
5047, 49mulcld 10011 . . . . . . . 8 (𝑠 ∈ ℝ → (2 · (sin‘(𝑠 / 2))) ∈ ℂ)
5114, 50syl 17 . . . . . . 7 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (2 · (sin‘(𝑠 / 2))) ∈ ℂ)
52 2cnd 11044 . . . . . . . 8 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 2 ∈ ℂ)
5314, 49syl 17 . . . . . . . 8 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (sin‘(𝑠 / 2)) ∈ ℂ)
54 2ne0 11064 . . . . . . . . 9 2 ≠ 0
5554a1i 11 . . . . . . . 8 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 2 ≠ 0)
56 fourierdlem57.ab . . . . . . . . . 10 (𝜑 → (𝐴(,)𝐵) ⊆ (-π[,]π))
5756sselda 3587 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ (-π[,]π))
58 eqcom 2628 . . . . . . . . . . . . . . 15 (𝑠 = 0 ↔ 0 = 𝑠)
5958biimpi 206 . . . . . . . . . . . . . 14 (𝑠 = 0 → 0 = 𝑠)
6059adantl 482 . . . . . . . . . . . . 13 ((𝑠 ∈ (𝐴(,)𝐵) ∧ 𝑠 = 0) → 0 = 𝑠)
61 simpl 473 . . . . . . . . . . . . 13 ((𝑠 ∈ (𝐴(,)𝐵) ∧ 𝑠 = 0) → 𝑠 ∈ (𝐴(,)𝐵))
6260, 61eqeltrd 2698 . . . . . . . . . . . 12 ((𝑠 ∈ (𝐴(,)𝐵) ∧ 𝑠 = 0) → 0 ∈ (𝐴(,)𝐵))
6362adantll 749 . . . . . . . . . . 11 (((𝜑𝑠 ∈ (𝐴(,)𝐵)) ∧ 𝑠 = 0) → 0 ∈ (𝐴(,)𝐵))
64 fourierdlem57.n0 . . . . . . . . . . . 12 (𝜑 → ¬ 0 ∈ (𝐴(,)𝐵))
6564ad2antrr 761 . . . . . . . . . . 11 (((𝜑𝑠 ∈ (𝐴(,)𝐵)) ∧ 𝑠 = 0) → ¬ 0 ∈ (𝐴(,)𝐵))
6663, 65pm2.65da 599 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ¬ 𝑠 = 0)
6766neqned 2797 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ≠ 0)
68 fourierdlem44 39696 . . . . . . . . 9 ((𝑠 ∈ (-π[,]π) ∧ 𝑠 ≠ 0) → (sin‘(𝑠 / 2)) ≠ 0)
6957, 67, 68syl2anc 692 . . . . . . . 8 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (sin‘(𝑠 / 2)) ≠ 0)
7052, 53, 55, 69mulne0d 10630 . . . . . . 7 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (2 · (sin‘(𝑠 / 2))) ≠ 0)
71 2z 11360 . . . . . . . 8 2 ∈ ℤ
7271a1i 11 . . . . . . 7 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 2 ∈ ℤ)
7351, 70, 72expne0d 12961 . . . . . 6 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ((2 · (sin‘(𝑠 / 2)))↑2) ≠ 0)
7445, 46, 73redivcld 10804 . . . . 5 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (((((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠)) · (2 · (sin‘(𝑠 / 2)))) − ((cos‘(𝑠 / 2)) · ((𝐹‘(𝑋 + 𝑠)) − 𝐶))) / ((2 · (sin‘(𝑠 / 2)))↑2)) ∈ ℝ)
75 eqid 2621 . . . . 5 (𝑠 ∈ (𝐴(,)𝐵) ↦ (((((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠)) · (2 · (sin‘(𝑠 / 2)))) − ((cos‘(𝑠 / 2)) · ((𝐹‘(𝑋 + 𝑠)) − 𝐶))) / ((2 · (sin‘(𝑠 / 2)))↑2))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ (((((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠)) · (2 · (sin‘(𝑠 / 2)))) − ((cos‘(𝑠 / 2)) · ((𝐹‘(𝑋 + 𝑠)) − 𝐶))) / ((2 · (sin‘(𝑠 / 2)))↑2)))
7674, 75fmptd 6346 . . . 4 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ (((((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠)) · (2 · (sin‘(𝑠 / 2)))) − ((cos‘(𝑠 / 2)) · ((𝐹‘(𝑋 + 𝑠)) − 𝐶))) / ((2 · (sin‘(𝑠 / 2)))↑2))):(𝐴(,)𝐵)⟶ℝ)
77 fourierdlem57.o . . . . . . . 8 𝑂 = (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2)))))
7877a1i 11 . . . . . . 7 (𝜑𝑂 = (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2))))))
7978oveq2d 6626 . . . . . 6 (𝜑 → (ℝ D 𝑂) = (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2)))))))
80 reelprrecn 9979 . . . . . . . 8 ℝ ∈ {ℝ, ℂ}
8180a1i 11 . . . . . . 7 (𝜑 → ℝ ∈ {ℝ, ℂ})
8243recnd 10019 . . . . . . 7 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ((𝐹‘(𝑋 + 𝑠)) − 𝐶) ∈ ℂ)
8340recnd 10019 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝐹‘(𝑋 + 𝑠)) ∈ ℂ)
84 eqid 2621 . . . . . . . . . 10 (ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))) = (ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))
8538, 3, 4, 8, 84, 1fourierdlem28 39680 . . . . . . . . 9 (𝜑 → (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝐹‘(𝑋 + 𝑠)))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ ((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠))))
8642recnd 10019 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐶 ∈ ℂ)
87 0red 9992 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 0 ∈ ℝ)
88 iooretop 22488 . . . . . . . . . . . 12 (𝐴(,)𝐵) ∈ (topGen‘ran (,))
89 eqid 2621 . . . . . . . . . . . . 13 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
9089tgioo2 22525 . . . . . . . . . . . 12 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
9188, 90eleqtri 2696 . . . . . . . . . . 11 (𝐴(,)𝐵) ∈ ((TopOpen‘ℂfld) ↾t ℝ)
9291a1i 11 . . . . . . . . . 10 (𝜑 → (𝐴(,)𝐵) ∈ ((TopOpen‘ℂfld) ↾t ℝ))
9341recnd 10019 . . . . . . . . . 10 (𝜑𝐶 ∈ ℂ)
9481, 92, 93dvmptconst 39456 . . . . . . . . 9 (𝜑 → (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ 𝐶)) = (𝑠 ∈ (𝐴(,)𝐵) ↦ 0))
9581, 83, 29, 85, 86, 87, 94dvmptsub 23649 . . . . . . . 8 (𝜑 → (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐹‘(𝑋 + 𝑠)) − 𝐶))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ (((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠)) − 0)))
9629recnd 10019 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠)) ∈ ℂ)
9796subid1d 10332 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠)) − 0) = ((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠)))
9897mpteq2dva 4709 . . . . . . . 8 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ (((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠)) − 0)) = (𝑠 ∈ (𝐴(,)𝐵) ↦ ((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠))))
9995, 98eqtrd 2655 . . . . . . 7 (𝜑 → (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐹‘(𝑋 + 𝑠)) − 𝐶))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ ((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠))))
100 eldifsn 4292 . . . . . . . 8 ((2 · (sin‘(𝑠 / 2))) ∈ (ℂ ∖ {0}) ↔ ((2 · (sin‘(𝑠 / 2))) ∈ ℂ ∧ (2 · (sin‘(𝑠 / 2))) ≠ 0))
10151, 70, 100sylanbrc 697 . . . . . . 7 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (2 · (sin‘(𝑠 / 2))) ∈ (ℂ ∖ {0}))
102 recn 9977 . . . . . . . . . . . . 13 (𝑠 ∈ ℝ → 𝑠 ∈ ℂ)
10354a1i 11 . . . . . . . . . . . . 13 (𝑠 ∈ ℝ → 2 ≠ 0)
104102, 47, 103divrec2d 10756 . . . . . . . . . . . 12 (𝑠 ∈ ℝ → (𝑠 / 2) = ((1 / 2) · 𝑠))
105104eqcomd 2627 . . . . . . . . . . 11 (𝑠 ∈ ℝ → ((1 / 2) · 𝑠) = (𝑠 / 2))
10613, 105syl 17 . . . . . . . . . 10 (𝑠 ∈ (𝐴(,)𝐵) → ((1 / 2) · 𝑠) = (𝑠 / 2))
107106fveq2d 6157 . . . . . . . . 9 (𝑠 ∈ (𝐴(,)𝐵) → (cos‘((1 / 2) · 𝑠)) = (cos‘(𝑠 / 2)))
108 halfcn 11198 . . . . . . . . . . . . 13 (1 / 2) ∈ ℂ
109108a1i 11 . . . . . . . . . . . 12 (𝑠 ∈ ℂ → (1 / 2) ∈ ℂ)
110 id 22 . . . . . . . . . . . 12 (𝑠 ∈ ℂ → 𝑠 ∈ ℂ)
111109, 110mulcld 10011 . . . . . . . . . . 11 (𝑠 ∈ ℂ → ((1 / 2) · 𝑠) ∈ ℂ)
112111coscld 14793 . . . . . . . . . 10 (𝑠 ∈ ℂ → (cos‘((1 / 2) · 𝑠)) ∈ ℂ)
11313, 102, 1123syl 18 . . . . . . . . 9 (𝑠 ∈ (𝐴(,)𝐵) → (cos‘((1 / 2) · 𝑠)) ∈ ℂ)
114107, 113eqeltrrd 2699 . . . . . . . 8 (𝑠 ∈ (𝐴(,)𝐵) → (cos‘(𝑠 / 2)) ∈ ℂ)
115114adantl 482 . . . . . . 7 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (cos‘(𝑠 / 2)) ∈ ℂ)
116 ioossre 12184 . . . . . . . . . . . . 13 (𝐴(,)𝐵) ⊆ ℝ
117 resmpt 5413 . . . . . . . . . . . . 13 ((𝐴(,)𝐵) ⊆ ℝ → ((𝑠 ∈ ℝ ↦ (2 · (sin‘(𝑠 / 2)))) ↾ (𝐴(,)𝐵)) = (𝑠 ∈ (𝐴(,)𝐵) ↦ (2 · (sin‘(𝑠 / 2)))))
118116, 117ax-mp 5 . . . . . . . . . . . 12 ((𝑠 ∈ ℝ ↦ (2 · (sin‘(𝑠 / 2)))) ↾ (𝐴(,)𝐵)) = (𝑠 ∈ (𝐴(,)𝐵) ↦ (2 · (sin‘(𝑠 / 2))))
119118eqcomi 2630 . . . . . . . . . . 11 (𝑠 ∈ (𝐴(,)𝐵) ↦ (2 · (sin‘(𝑠 / 2)))) = ((𝑠 ∈ ℝ ↦ (2 · (sin‘(𝑠 / 2)))) ↾ (𝐴(,)𝐵))
120119oveq2i 6621 . . . . . . . . . 10 (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (2 · (sin‘(𝑠 / 2))))) = (ℝ D ((𝑠 ∈ ℝ ↦ (2 · (sin‘(𝑠 / 2)))) ↾ (𝐴(,)𝐵)))
121 ax-resscn 9944 . . . . . . . . . . 11 ℝ ⊆ ℂ
122 eqid 2621 . . . . . . . . . . . 12 (𝑠 ∈ ℝ ↦ (2 · (sin‘(𝑠 / 2)))) = (𝑠 ∈ ℝ ↦ (2 · (sin‘(𝑠 / 2))))
123122, 50fmpti 6344 . . . . . . . . . . 11 (𝑠 ∈ ℝ ↦ (2 · (sin‘(𝑠 / 2)))):ℝ⟶ℂ
124 ssid 3608 . . . . . . . . . . 11 ℝ ⊆ ℝ
12589, 90dvres 23594 . . . . . . . . . . 11 (((ℝ ⊆ ℂ ∧ (𝑠 ∈ ℝ ↦ (2 · (sin‘(𝑠 / 2)))):ℝ⟶ℂ) ∧ (ℝ ⊆ ℝ ∧ (𝐴(,)𝐵) ⊆ ℝ)) → (ℝ D ((𝑠 ∈ ℝ ↦ (2 · (sin‘(𝑠 / 2)))) ↾ (𝐴(,)𝐵))) = ((ℝ D (𝑠 ∈ ℝ ↦ (2 · (sin‘(𝑠 / 2))))) ↾ ((int‘(topGen‘ran (,)))‘(𝐴(,)𝐵))))
126121, 123, 124, 116, 125mp4an 708 . . . . . . . . . 10 (ℝ D ((𝑠 ∈ ℝ ↦ (2 · (sin‘(𝑠 / 2)))) ↾ (𝐴(,)𝐵))) = ((ℝ D (𝑠 ∈ ℝ ↦ (2 · (sin‘(𝑠 / 2))))) ↾ ((int‘(topGen‘ran (,)))‘(𝐴(,)𝐵)))
127 resmpt 5413 . . . . . . . . . . . . . . 15 (ℝ ⊆ ℂ → ((𝑠 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑠)))) ↾ ℝ) = (𝑠 ∈ ℝ ↦ (2 · (sin‘((1 / 2) · 𝑠)))))
128121, 127ax-mp 5 . . . . . . . . . . . . . 14 ((𝑠 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑠)))) ↾ ℝ) = (𝑠 ∈ ℝ ↦ (2 · (sin‘((1 / 2) · 𝑠))))
129105fveq2d 6157 . . . . . . . . . . . . . . . 16 (𝑠 ∈ ℝ → (sin‘((1 / 2) · 𝑠)) = (sin‘(𝑠 / 2)))
130129oveq2d 6626 . . . . . . . . . . . . . . 15 (𝑠 ∈ ℝ → (2 · (sin‘((1 / 2) · 𝑠))) = (2 · (sin‘(𝑠 / 2))))
131130mpteq2ia 4705 . . . . . . . . . . . . . 14 (𝑠 ∈ ℝ ↦ (2 · (sin‘((1 / 2) · 𝑠)))) = (𝑠 ∈ ℝ ↦ (2 · (sin‘(𝑠 / 2))))
132128, 131eqtr2i 2644 . . . . . . . . . . . . 13 (𝑠 ∈ ℝ ↦ (2 · (sin‘(𝑠 / 2)))) = ((𝑠 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑠)))) ↾ ℝ)
133132oveq2i 6621 . . . . . . . . . . . 12 (ℝ D (𝑠 ∈ ℝ ↦ (2 · (sin‘(𝑠 / 2))))) = (ℝ D ((𝑠 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑠)))) ↾ ℝ))
134 ioontr 39170 . . . . . . . . . . . 12 ((int‘(topGen‘ran (,)))‘(𝐴(,)𝐵)) = (𝐴(,)𝐵)
135133, 134reseq12i 5359 . . . . . . . . . . 11 ((ℝ D (𝑠 ∈ ℝ ↦ (2 · (sin‘(𝑠 / 2))))) ↾ ((int‘(topGen‘ran (,)))‘(𝐴(,)𝐵))) = ((ℝ D ((𝑠 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑠)))) ↾ ℝ)) ↾ (𝐴(,)𝐵))
136 eqid 2621 . . . . . . . . . . . . . 14 (𝑠 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑠)))) = (𝑠 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑠))))
137 2cnd 11044 . . . . . . . . . . . . . . 15 (𝑠 ∈ ℂ → 2 ∈ ℂ)
138111sincld 14792 . . . . . . . . . . . . . . 15 (𝑠 ∈ ℂ → (sin‘((1 / 2) · 𝑠)) ∈ ℂ)
139137, 138mulcld 10011 . . . . . . . . . . . . . 14 (𝑠 ∈ ℂ → (2 · (sin‘((1 / 2) · 𝑠))) ∈ ℂ)
140136, 139fmpti 6344 . . . . . . . . . . . . 13 (𝑠 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑠)))):ℂ⟶ℂ
141 ssid 3608 . . . . . . . . . . . . 13 ℂ ⊆ ℂ
142 dmmptg 5596 . . . . . . . . . . . . . . . 16 (∀𝑠 ∈ ℂ ((2 · (1 / 2)) · (cos‘((1 / 2) · 𝑠))) ∈ ℂ → dom (𝑠 ∈ ℂ ↦ ((2 · (1 / 2)) · (cos‘((1 / 2) · 𝑠)))) = ℂ)
143 2cn 11042 . . . . . . . . . . . . . . . . . . 19 2 ∈ ℂ
144143, 108mulcli 9996 . . . . . . . . . . . . . . . . . 18 (2 · (1 / 2)) ∈ ℂ
145144a1i 11 . . . . . . . . . . . . . . . . 17 (𝑠 ∈ ℂ → (2 · (1 / 2)) ∈ ℂ)
146145, 112mulcld 10011 . . . . . . . . . . . . . . . 16 (𝑠 ∈ ℂ → ((2 · (1 / 2)) · (cos‘((1 / 2) · 𝑠))) ∈ ℂ)
147142, 146mprg 2921 . . . . . . . . . . . . . . 15 dom (𝑠 ∈ ℂ ↦ ((2 · (1 / 2)) · (cos‘((1 / 2) · 𝑠)))) = ℂ
148121, 147sseqtr4i 3622 . . . . . . . . . . . . . 14 ℝ ⊆ dom (𝑠 ∈ ℂ ↦ ((2 · (1 / 2)) · (cos‘((1 / 2) · 𝑠))))
149 dvasinbx 39463 . . . . . . . . . . . . . . . 16 ((2 ∈ ℂ ∧ (1 / 2) ∈ ℂ) → (ℂ D (𝑠 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑠))))) = (𝑠 ∈ ℂ ↦ ((2 · (1 / 2)) · (cos‘((1 / 2) · 𝑠)))))
150143, 108, 149mp2an 707 . . . . . . . . . . . . . . 15 (ℂ D (𝑠 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑠))))) = (𝑠 ∈ ℂ ↦ ((2 · (1 / 2)) · (cos‘((1 / 2) · 𝑠))))
151150dmeqi 5290 . . . . . . . . . . . . . 14 dom (ℂ D (𝑠 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑠))))) = dom (𝑠 ∈ ℂ ↦ ((2 · (1 / 2)) · (cos‘((1 / 2) · 𝑠))))
152148, 151sseqtr4i 3622 . . . . . . . . . . . . 13 ℝ ⊆ dom (ℂ D (𝑠 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑠)))))
153 dvres3 23596 . . . . . . . . . . . . 13 (((ℝ ∈ {ℝ, ℂ} ∧ (𝑠 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑠)))):ℂ⟶ℂ) ∧ (ℂ ⊆ ℂ ∧ ℝ ⊆ dom (ℂ D (𝑠 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑠))))))) → (ℝ D ((𝑠 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑠)))) ↾ ℝ)) = ((ℂ D (𝑠 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑠))))) ↾ ℝ))
15480, 140, 141, 152, 153mp4an 708 . . . . . . . . . . . 12 (ℝ D ((𝑠 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑠)))) ↾ ℝ)) = ((ℂ D (𝑠 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑠))))) ↾ ℝ)
155154reseq1i 5357 . . . . . . . . . . 11 ((ℝ D ((𝑠 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑠)))) ↾ ℝ)) ↾ (𝐴(,)𝐵)) = (((ℂ D (𝑠 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑠))))) ↾ ℝ) ↾ (𝐴(,)𝐵))
156150reseq1i 5357 . . . . . . . . . . . . 13 ((ℂ D (𝑠 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑠))))) ↾ ℝ) = ((𝑠 ∈ ℂ ↦ ((2 · (1 / 2)) · (cos‘((1 / 2) · 𝑠)))) ↾ ℝ)
157156reseq1i 5357 . . . . . . . . . . . 12 (((ℂ D (𝑠 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑠))))) ↾ ℝ) ↾ (𝐴(,)𝐵)) = (((𝑠 ∈ ℂ ↦ ((2 · (1 / 2)) · (cos‘((1 / 2) · 𝑠)))) ↾ ℝ) ↾ (𝐴(,)𝐵))
158 resabs1 5391 . . . . . . . . . . . . 13 ((𝐴(,)𝐵) ⊆ ℝ → (((𝑠 ∈ ℂ ↦ ((2 · (1 / 2)) · (cos‘((1 / 2) · 𝑠)))) ↾ ℝ) ↾ (𝐴(,)𝐵)) = ((𝑠 ∈ ℂ ↦ ((2 · (1 / 2)) · (cos‘((1 / 2) · 𝑠)))) ↾ (𝐴(,)𝐵)))
159116, 158ax-mp 5 . . . . . . . . . . . 12 (((𝑠 ∈ ℂ ↦ ((2 · (1 / 2)) · (cos‘((1 / 2) · 𝑠)))) ↾ ℝ) ↾ (𝐴(,)𝐵)) = ((𝑠 ∈ ℂ ↦ ((2 · (1 / 2)) · (cos‘((1 / 2) · 𝑠)))) ↾ (𝐴(,)𝐵))
160 ioosscn 39150 . . . . . . . . . . . . 13 (𝐴(,)𝐵) ⊆ ℂ
161 resmpt 5413 . . . . . . . . . . . . 13 ((𝐴(,)𝐵) ⊆ ℂ → ((𝑠 ∈ ℂ ↦ ((2 · (1 / 2)) · (cos‘((1 / 2) · 𝑠)))) ↾ (𝐴(,)𝐵)) = (𝑠 ∈ (𝐴(,)𝐵) ↦ ((2 · (1 / 2)) · (cos‘((1 / 2) · 𝑠)))))
162160, 161ax-mp 5 . . . . . . . . . . . 12 ((𝑠 ∈ ℂ ↦ ((2 · (1 / 2)) · (cos‘((1 / 2) · 𝑠)))) ↾ (𝐴(,)𝐵)) = (𝑠 ∈ (𝐴(,)𝐵) ↦ ((2 · (1 / 2)) · (cos‘((1 / 2) · 𝑠))))
163157, 159, 1623eqtri 2647 . . . . . . . . . . 11 (((ℂ D (𝑠 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑠))))) ↾ ℝ) ↾ (𝐴(,)𝐵)) = (𝑠 ∈ (𝐴(,)𝐵) ↦ ((2 · (1 / 2)) · (cos‘((1 / 2) · 𝑠))))
164135, 155, 1633eqtri 2647 . . . . . . . . . 10 ((ℝ D (𝑠 ∈ ℝ ↦ (2 · (sin‘(𝑠 / 2))))) ↾ ((int‘(topGen‘ran (,)))‘(𝐴(,)𝐵))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ ((2 · (1 / 2)) · (cos‘((1 / 2) · 𝑠))))
165120, 126, 1643eqtri 2647 . . . . . . . . 9 (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (2 · (sin‘(𝑠 / 2))))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ ((2 · (1 / 2)) · (cos‘((1 / 2) · 𝑠))))
166143, 54recidi 10707 . . . . . . . . . . . . 13 (2 · (1 / 2)) = 1
167166oveq1i 6620 . . . . . . . . . . . 12 ((2 · (1 / 2)) · (cos‘((1 / 2) · 𝑠))) = (1 · (cos‘((1 / 2) · 𝑠)))
168167a1i 11 . . . . . . . . . . 11 (𝑠 ∈ (𝐴(,)𝐵) → ((2 · (1 / 2)) · (cos‘((1 / 2) · 𝑠))) = (1 · (cos‘((1 / 2) · 𝑠))))
169113mulid2d 10009 . . . . . . . . . . 11 (𝑠 ∈ (𝐴(,)𝐵) → (1 · (cos‘((1 / 2) · 𝑠))) = (cos‘((1 / 2) · 𝑠)))
170168, 169, 1073eqtrd 2659 . . . . . . . . . 10 (𝑠 ∈ (𝐴(,)𝐵) → ((2 · (1 / 2)) · (cos‘((1 / 2) · 𝑠))) = (cos‘(𝑠 / 2)))
171170mpteq2ia 4705 . . . . . . . . 9 (𝑠 ∈ (𝐴(,)𝐵) ↦ ((2 · (1 / 2)) · (cos‘((1 / 2) · 𝑠)))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ (cos‘(𝑠 / 2)))
172165, 171eqtri 2643 . . . . . . . 8 (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (2 · (sin‘(𝑠 / 2))))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ (cos‘(𝑠 / 2)))
173172a1i 11 . . . . . . 7 (𝜑 → (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (2 · (sin‘(𝑠 / 2))))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ (cos‘(𝑠 / 2))))
17481, 82, 29, 99, 101, 115, 173dvmptdiv 39460 . . . . . 6 (𝜑 → (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2)))))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ (((((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠)) · (2 · (sin‘(𝑠 / 2)))) − ((cos‘(𝑠 / 2)) · ((𝐹‘(𝑋 + 𝑠)) − 𝐶))) / ((2 · (sin‘(𝑠 / 2)))↑2))))
17579, 174eqtrd 2655 . . . . 5 (𝜑 → (ℝ D 𝑂) = (𝑠 ∈ (𝐴(,)𝐵) ↦ (((((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠)) · (2 · (sin‘(𝑠 / 2)))) − ((cos‘(𝑠 / 2)) · ((𝐹‘(𝑋 + 𝑠)) − 𝐶))) / ((2 · (sin‘(𝑠 / 2)))↑2))))
176175feq1d 5992 . . . 4 (𝜑 → ((ℝ D 𝑂):(𝐴(,)𝐵)⟶ℝ ↔ (𝑠 ∈ (𝐴(,)𝐵) ↦ (((((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠)) · (2 · (sin‘(𝑠 / 2)))) − ((cos‘(𝑠 / 2)) · ((𝐹‘(𝑋 + 𝑠)) − 𝐶))) / ((2 · (sin‘(𝑠 / 2)))↑2))):(𝐴(,)𝐵)⟶ℝ))
17776, 176mpbird 247 . . 3 (𝜑 → (ℝ D 𝑂):(𝐴(,)𝐵)⟶ℝ)
178177, 175jca 554 . 2 (𝜑 → ((ℝ D 𝑂):(𝐴(,)𝐵)⟶ℝ ∧ (ℝ D 𝑂) = (𝑠 ∈ (𝐴(,)𝐵) ↦ (((((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠)) · (2 · (sin‘(𝑠 / 2)))) − ((cos‘(𝑠 / 2)) · ((𝐹‘(𝑋 + 𝑠)) − 𝐶))) / ((2 · (sin‘(𝑠 / 2)))↑2)))))
179178, 172pm3.2i 471 1 ((𝜑 → ((ℝ D 𝑂):(𝐴(,)𝐵)⟶ℝ ∧ (ℝ D 𝑂) = (𝑠 ∈ (𝐴(,)𝐵) ↦ (((((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠)) · (2 · (sin‘(𝑠 / 2)))) − ((cos‘(𝑠 / 2)) · ((𝐹‘(𝑋 + 𝑠)) − 𝐶))) / ((2 · (sin‘(𝑠 / 2)))↑2))))) ∧ (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (2 · (sin‘(𝑠 / 2))))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ (cos‘(𝑠 / 2))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384   = wceq 1480  wcel 1987  wne 2790  cdif 3556  wss 3559  {csn 4153  {cpr 4155   class class class wbr 4618  cmpt 4678  dom cdm 5079  ran crn 5080  cres 5081  wf 5848  cfv 5852  (class class class)co 6610  cc 9885  cr 9886  0cc0 9887  1c1 9888   + caddc 9890   · cmul 9892  *cxr 10024   < clt 10025  cmin 10217  -cneg 10218   / cdiv 10635  2c2 11021  cz 11328  (,)cioo 12124  [,]cicc 12127  cexp 12807  sincsin 14726  cosccos 14727  πcpi 14729  t crest 16009  TopOpenctopn 16010  topGenctg 16026  fldccnfld 19674  intcnt 20740   D cdv 23546
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-inf2 8489  ax-cnex 9943  ax-resscn 9944  ax-1cn 9945  ax-icn 9946  ax-addcl 9947  ax-addrcl 9948  ax-mulcl 9949  ax-mulrcl 9950  ax-mulcom 9951  ax-addass 9952  ax-mulass 9953  ax-distr 9954  ax-i2m1 9955  ax-1ne0 9956  ax-1rid 9957  ax-rnegex 9958  ax-rrecex 9959  ax-cnre 9960  ax-pre-lttri 9961  ax-pre-lttrn 9962  ax-pre-ltadd 9963  ax-pre-mulgt0 9964  ax-pre-sup 9965  ax-addf 9966  ax-mulf 9967
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-iin 4493  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-se 5039  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-isom 5861  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-of 6857  df-om 7020  df-1st 7120  df-2nd 7121  df-supp 7248  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-1o 7512  df-2o 7513  df-oadd 7516  df-er 7694  df-map 7811  df-pm 7812  df-ixp 7860  df-en 7907  df-dom 7908  df-sdom 7909  df-fin 7910  df-fsupp 8227  df-fi 8268  df-sup 8299  df-inf 8300  df-oi 8366  df-card 8716  df-cda 8941  df-pnf 10027  df-mnf 10028  df-xr 10029  df-ltxr 10030  df-le 10031  df-sub 10219  df-neg 10220  df-div 10636  df-nn 10972  df-2 11030  df-3 11031  df-4 11032  df-5 11033  df-6 11034  df-7 11035  df-8 11036  df-9 11037  df-n0 11244  df-z 11329  df-dec 11445  df-uz 11639  df-q 11740  df-rp 11784  df-xneg 11897  df-xadd 11898  df-xmul 11899  df-ioo 12128  df-ioc 12129  df-ico 12130  df-icc 12131  df-fz 12276  df-fzo 12414  df-fl 12540  df-mod 12616  df-seq 12749  df-exp 12808  df-fac 13008  df-bc 13037  df-hash 13065  df-shft 13748  df-cj 13780  df-re 13781  df-im 13782  df-sqrt 13916  df-abs 13917  df-limsup 14143  df-clim 14160  df-rlim 14161  df-sum 14358  df-ef 14730  df-sin 14732  df-cos 14733  df-pi 14735  df-struct 15790  df-ndx 15791  df-slot 15792  df-base 15793  df-sets 15794  df-ress 15795  df-plusg 15882  df-mulr 15883  df-starv 15884  df-sca 15885  df-vsca 15886  df-ip 15887  df-tset 15888  df-ple 15889  df-ds 15892  df-unif 15893  df-hom 15894  df-cco 15895  df-rest 16011  df-topn 16012  df-0g 16030  df-gsum 16031  df-topgen 16032  df-pt 16033  df-prds 16036  df-xrs 16090  df-qtop 16095  df-imas 16096  df-xps 16098  df-mre 16174  df-mrc 16175  df-acs 16177  df-mgm 17170  df-sgrp 17212  df-mnd 17223  df-submnd 17264  df-mulg 17469  df-cntz 17678  df-cmn 18123  df-psmet 19666  df-xmet 19667  df-met 19668  df-bl 19669  df-mopn 19670  df-fbas 19671  df-fg 19672  df-cnfld 19675  df-top 20627  df-topon 20644  df-topsp 20657  df-bases 20670  df-cld 20742  df-ntr 20743  df-cls 20744  df-nei 20821  df-lp 20859  df-perf 20860  df-cn 20950  df-cnp 20951  df-t1 21037  df-haus 21038  df-tx 21284  df-hmeo 21477  df-fil 21569  df-fm 21661  df-flim 21662  df-flf 21663  df-xms 22044  df-ms 22045  df-tms 22046  df-cncf 22600  df-limc 23549  df-dv 23550
This theorem is referenced by:  fourierdlem68  39719  fourierdlem80  39731
  Copyright terms: Public domain W3C validator