Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem71 Structured version   Visualization version   GIF version

Theorem fourierdlem71 39701
Description: A periodic piecewise continuous function, possibly undefined on a finite set in each periodic interval, is bounded. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem71.dmf (𝜑 → dom 𝐹 ⊆ ℝ)
fourierdlem71.f (𝜑𝐹:dom 𝐹⟶ℝ)
fourierdlem71.a (𝜑𝐴 ∈ ℝ)
fourierdlem71.b (𝜑𝐵 ∈ ℝ)
fourierdlem71.altb (𝜑𝐴 < 𝐵)
fourierdlem71.t 𝑇 = (𝐵𝐴)
fourierdlem71.7 (𝜑𝑀 ∈ ℕ)
fourierdlem71.q (𝜑𝑄:(0...𝑀)⟶ℝ)
fourierdlem71.q0 (𝜑 → (𝑄‘0) = 𝐴)
fourierdlem71.10 (𝜑 → (𝑄𝑀) = 𝐵)
fourierdlem71.fcn ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
fourierdlem71.r ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
fourierdlem71.l ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
fourierdlem71.xpt (((𝜑𝑥 ∈ dom 𝐹) ∧ 𝑘 ∈ ℤ) → (𝑥 + (𝑘 · 𝑇)) ∈ dom 𝐹)
fourierdlem71.fxpt (((𝜑𝑥 ∈ dom 𝐹) ∧ 𝑘 ∈ ℤ) → (𝐹‘(𝑥 + (𝑘 · 𝑇))) = (𝐹𝑥))
fourierdlem71.i 𝐼 = (𝑖 ∈ (0..^𝑀) ↦ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
fourierdlem71.e 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
Assertion
Ref Expression
fourierdlem71 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ dom 𝐹(abs‘(𝐹𝑥)) ≤ 𝑦)
Distinct variable groups:   𝑥,𝐴,𝑦   𝐵,𝑘,𝑥   𝑦,𝐵   𝑖,𝐹,𝑥,𝑘   𝑦,𝐹   𝑖,𝐼,𝑥   𝑦,𝐼   𝑥,𝐿   𝑖,𝑀,𝑥,𝑘   𝑄,𝑖,𝑥,𝑘   𝑦,𝑄   𝑥,𝑅   𝑇,𝑘,𝑥   𝑦,𝑇   𝜑,𝑖,𝑥,𝑘   𝜑,𝑦
Allowed substitution hints:   𝐴(𝑖,𝑘)   𝐵(𝑖)   𝑅(𝑦,𝑖,𝑘)   𝑇(𝑖)   𝐸(𝑥,𝑦,𝑖,𝑘)   𝐼(𝑘)   𝐿(𝑦,𝑖,𝑘)   𝑀(𝑦)

Proof of Theorem fourierdlem71
Dummy variables 𝑤 𝑏 𝑡 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prfi 8179 . . . 4 {(ran 𝑄 ∩ dom 𝐹), ran 𝐼} ∈ Fin
21a1i 11 . . 3 (𝜑 → {(ran 𝑄 ∩ dom 𝐹), ran 𝐼} ∈ Fin)
3 fourierdlem71.f . . . . . . 7 (𝜑𝐹:dom 𝐹⟶ℝ)
43adantr 481 . . . . . 6 ((𝜑𝑥 {(ran 𝑄 ∩ dom 𝐹), ran 𝐼}) → 𝐹:dom 𝐹⟶ℝ)
5 simpl 473 . . . . . . 7 ((𝜑𝑥 {(ran 𝑄 ∩ dom 𝐹), ran 𝐼}) → 𝜑)
6 simpr 477 . . . . . . . 8 ((𝜑𝑥 {(ran 𝑄 ∩ dom 𝐹), ran 𝐼}) → 𝑥 {(ran 𝑄 ∩ dom 𝐹), ran 𝐼})
7 fourierdlem71.q . . . . . . . . . . . 12 (𝜑𝑄:(0...𝑀)⟶ℝ)
8 ovex 6632 . . . . . . . . . . . . 13 (0...𝑀) ∈ V
98a1i 11 . . . . . . . . . . . 12 (𝜑 → (0...𝑀) ∈ V)
10 fex 6444 . . . . . . . . . . . 12 ((𝑄:(0...𝑀)⟶ℝ ∧ (0...𝑀) ∈ V) → 𝑄 ∈ V)
117, 9, 10syl2anc 692 . . . . . . . . . . 11 (𝜑𝑄 ∈ V)
12 rnexg 7045 . . . . . . . . . . 11 (𝑄 ∈ V → ran 𝑄 ∈ V)
13 inex1g 4761 . . . . . . . . . . 11 (ran 𝑄 ∈ V → (ran 𝑄 ∩ dom 𝐹) ∈ V)
1411, 12, 133syl 18 . . . . . . . . . 10 (𝜑 → (ran 𝑄 ∩ dom 𝐹) ∈ V)
1514adantr 481 . . . . . . . . 9 ((𝜑𝑥 {(ran 𝑄 ∩ dom 𝐹), ran 𝐼}) → (ran 𝑄 ∩ dom 𝐹) ∈ V)
16 fourierdlem71.i . . . . . . . . . . . . . 14 𝐼 = (𝑖 ∈ (0..^𝑀) ↦ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
17 ovex 6632 . . . . . . . . . . . . . . 15 (0..^𝑀) ∈ V
1817mptex 6440 . . . . . . . . . . . . . 14 (𝑖 ∈ (0..^𝑀) ↦ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ V
1916, 18eqeltri 2694 . . . . . . . . . . . . 13 𝐼 ∈ V
2019rnex 7047 . . . . . . . . . . . 12 ran 𝐼 ∈ V
2120a1i 11 . . . . . . . . . . 11 (𝜑 → ran 𝐼 ∈ V)
22 uniexg 6908 . . . . . . . . . . 11 (ran 𝐼 ∈ V → ran 𝐼 ∈ V)
2321, 22syl 17 . . . . . . . . . 10 (𝜑 ran 𝐼 ∈ V)
2423adantr 481 . . . . . . . . 9 ((𝜑𝑥 {(ran 𝑄 ∩ dom 𝐹), ran 𝐼}) → ran 𝐼 ∈ V)
25 uniprg 4416 . . . . . . . . 9 (((ran 𝑄 ∩ dom 𝐹) ∈ V ∧ ran 𝐼 ∈ V) → {(ran 𝑄 ∩ dom 𝐹), ran 𝐼} = ((ran 𝑄 ∩ dom 𝐹) ∪ ran 𝐼))
2615, 24, 25syl2anc 692 . . . . . . . 8 ((𝜑𝑥 {(ran 𝑄 ∩ dom 𝐹), ran 𝐼}) → {(ran 𝑄 ∩ dom 𝐹), ran 𝐼} = ((ran 𝑄 ∩ dom 𝐹) ∪ ran 𝐼))
276, 26eleqtrd 2700 . . . . . . 7 ((𝜑𝑥 {(ran 𝑄 ∩ dom 𝐹), ran 𝐼}) → 𝑥 ∈ ((ran 𝑄 ∩ dom 𝐹) ∪ ran 𝐼))
28 elinel2 3778 . . . . . . . . 9 (𝑥 ∈ (ran 𝑄 ∩ dom 𝐹) → 𝑥 ∈ dom 𝐹)
2928adantl 482 . . . . . . . 8 (((𝜑𝑥 ∈ ((ran 𝑄 ∩ dom 𝐹) ∪ ran 𝐼)) ∧ 𝑥 ∈ (ran 𝑄 ∩ dom 𝐹)) → 𝑥 ∈ dom 𝐹)
30 simpll 789 . . . . . . . . 9 (((𝜑𝑥 ∈ ((ran 𝑄 ∩ dom 𝐹) ∪ ran 𝐼)) ∧ ¬ 𝑥 ∈ (ran 𝑄 ∩ dom 𝐹)) → 𝜑)
31 elunnel1 3732 . . . . . . . . . 10 ((𝑥 ∈ ((ran 𝑄 ∩ dom 𝐹) ∪ ran 𝐼) ∧ ¬ 𝑥 ∈ (ran 𝑄 ∩ dom 𝐹)) → 𝑥 ran 𝐼)
3231adantll 749 . . . . . . . . 9 (((𝜑𝑥 ∈ ((ran 𝑄 ∩ dom 𝐹) ∪ ran 𝐼)) ∧ ¬ 𝑥 ∈ (ran 𝑄 ∩ dom 𝐹)) → 𝑥 ran 𝐼)
3316funmpt2 5885 . . . . . . . . . . . . 13 Fun 𝐼
34 elunirn 6463 . . . . . . . . . . . . 13 (Fun 𝐼 → (𝑥 ran 𝐼 ↔ ∃𝑖 ∈ dom 𝐼 𝑥 ∈ (𝐼𝑖)))
3533, 34ax-mp 5 . . . . . . . . . . . 12 (𝑥 ran 𝐼 ↔ ∃𝑖 ∈ dom 𝐼 𝑥 ∈ (𝐼𝑖))
3635biimpi 206 . . . . . . . . . . 11 (𝑥 ran 𝐼 → ∃𝑖 ∈ dom 𝐼 𝑥 ∈ (𝐼𝑖))
3736adantl 482 . . . . . . . . . 10 ((𝜑𝑥 ran 𝐼) → ∃𝑖 ∈ dom 𝐼 𝑥 ∈ (𝐼𝑖))
38 id 22 . . . . . . . . . . . . . . . . . . 19 (𝑖 ∈ dom 𝐼𝑖 ∈ dom 𝐼)
39 ovex 6632 . . . . . . . . . . . . . . . . . . . 20 ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∈ V
4039, 16dmmpti 5980 . . . . . . . . . . . . . . . . . . 19 dom 𝐼 = (0..^𝑀)
4138, 40syl6eleq 2708 . . . . . . . . . . . . . . . . . 18 (𝑖 ∈ dom 𝐼𝑖 ∈ (0..^𝑀))
4241adantl 482 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ dom 𝐼) → 𝑖 ∈ (0..^𝑀))
4339a1i 11 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ dom 𝐼) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∈ V)
4416fvmpt2 6248 . . . . . . . . . . . . . . . . 17 ((𝑖 ∈ (0..^𝑀) ∧ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∈ V) → (𝐼𝑖) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
4542, 43, 44syl2anc 692 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ dom 𝐼) → (𝐼𝑖) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
46 fourierdlem71.fcn . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
47 cncff 22604 . . . . . . . . . . . . . . . . . . 19 ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))):((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))⟶ℂ)
48 fdm 6008 . . . . . . . . . . . . . . . . . . 19 ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))):((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))⟶ℂ → dom (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
4946, 47, 483syl 18 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ (0..^𝑀)) → dom (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
5041, 49sylan2 491 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ dom 𝐼) → dom (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
51 ssdmres 5379 . . . . . . . . . . . . . . . . 17 (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ dom 𝐹 ↔ dom (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
5250, 51sylibr 224 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ dom 𝐼) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ dom 𝐹)
5345, 52eqsstrd 3618 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ dom 𝐼) → (𝐼𝑖) ⊆ dom 𝐹)
54533adant3 1079 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ dom 𝐼𝑥 ∈ (𝐼𝑖)) → (𝐼𝑖) ⊆ dom 𝐹)
55 simp3 1061 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ dom 𝐼𝑥 ∈ (𝐼𝑖)) → 𝑥 ∈ (𝐼𝑖))
5654, 55sseldd 3584 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ dom 𝐼𝑥 ∈ (𝐼𝑖)) → 𝑥 ∈ dom 𝐹)
57563exp 1261 . . . . . . . . . . . 12 (𝜑 → (𝑖 ∈ dom 𝐼 → (𝑥 ∈ (𝐼𝑖) → 𝑥 ∈ dom 𝐹)))
5857adantr 481 . . . . . . . . . . 11 ((𝜑𝑥 ran 𝐼) → (𝑖 ∈ dom 𝐼 → (𝑥 ∈ (𝐼𝑖) → 𝑥 ∈ dom 𝐹)))
5958rexlimdv 3023 . . . . . . . . . 10 ((𝜑𝑥 ran 𝐼) → (∃𝑖 ∈ dom 𝐼 𝑥 ∈ (𝐼𝑖) → 𝑥 ∈ dom 𝐹))
6037, 59mpd 15 . . . . . . . . 9 ((𝜑𝑥 ran 𝐼) → 𝑥 ∈ dom 𝐹)
6130, 32, 60syl2anc 692 . . . . . . . 8 (((𝜑𝑥 ∈ ((ran 𝑄 ∩ dom 𝐹) ∪ ran 𝐼)) ∧ ¬ 𝑥 ∈ (ran 𝑄 ∩ dom 𝐹)) → 𝑥 ∈ dom 𝐹)
6229, 61pm2.61dan 831 . . . . . . 7 ((𝜑𝑥 ∈ ((ran 𝑄 ∩ dom 𝐹) ∪ ran 𝐼)) → 𝑥 ∈ dom 𝐹)
635, 27, 62syl2anc 692 . . . . . 6 ((𝜑𝑥 {(ran 𝑄 ∩ dom 𝐹), ran 𝐼}) → 𝑥 ∈ dom 𝐹)
644, 63ffvelrnd 6316 . . . . 5 ((𝜑𝑥 {(ran 𝑄 ∩ dom 𝐹), ran 𝐼}) → (𝐹𝑥) ∈ ℝ)
6564recnd 10012 . . . 4 ((𝜑𝑥 {(ran 𝑄 ∩ dom 𝐹), ran 𝐼}) → (𝐹𝑥) ∈ ℂ)
6665abscld 14109 . . 3 ((𝜑𝑥 {(ran 𝑄 ∩ dom 𝐹), ran 𝐼}) → (abs‘(𝐹𝑥)) ∈ ℝ)
67 simpr 477 . . . . . . 7 ((𝜑𝑤 = (ran 𝑄 ∩ dom 𝐹)) → 𝑤 = (ran 𝑄 ∩ dom 𝐹))
68 fzfid 12712 . . . . . . . . . 10 (𝜑 → (0...𝑀) ∈ Fin)
69 rnffi 38830 . . . . . . . . . 10 ((𝑄:(0...𝑀)⟶ℝ ∧ (0...𝑀) ∈ Fin) → ran 𝑄 ∈ Fin)
707, 68, 69syl2anc 692 . . . . . . . . 9 (𝜑 → ran 𝑄 ∈ Fin)
71 infi 8128 . . . . . . . . 9 (ran 𝑄 ∈ Fin → (ran 𝑄 ∩ dom 𝐹) ∈ Fin)
7270, 71syl 17 . . . . . . . 8 (𝜑 → (ran 𝑄 ∩ dom 𝐹) ∈ Fin)
7372adantr 481 . . . . . . 7 ((𝜑𝑤 = (ran 𝑄 ∩ dom 𝐹)) → (ran 𝑄 ∩ dom 𝐹) ∈ Fin)
7467, 73eqeltrd 2698 . . . . . 6 ((𝜑𝑤 = (ran 𝑄 ∩ dom 𝐹)) → 𝑤 ∈ Fin)
75 simpll 789 . . . . . . . 8 (((𝜑𝑤 = (ran 𝑄 ∩ dom 𝐹)) ∧ 𝑥𝑤) → 𝜑)
76 simpr 477 . . . . . . . . . 10 ((𝑤 = (ran 𝑄 ∩ dom 𝐹) ∧ 𝑥𝑤) → 𝑥𝑤)
77 simpl 473 . . . . . . . . . 10 ((𝑤 = (ran 𝑄 ∩ dom 𝐹) ∧ 𝑥𝑤) → 𝑤 = (ran 𝑄 ∩ dom 𝐹))
7876, 77eleqtrd 2700 . . . . . . . . 9 ((𝑤 = (ran 𝑄 ∩ dom 𝐹) ∧ 𝑥𝑤) → 𝑥 ∈ (ran 𝑄 ∩ dom 𝐹))
7978adantll 749 . . . . . . . 8 (((𝜑𝑤 = (ran 𝑄 ∩ dom 𝐹)) ∧ 𝑥𝑤) → 𝑥 ∈ (ran 𝑄 ∩ dom 𝐹))
803adantr 481 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (ran 𝑄 ∩ dom 𝐹)) → 𝐹:dom 𝐹⟶ℝ)
8128adantl 482 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (ran 𝑄 ∩ dom 𝐹)) → 𝑥 ∈ dom 𝐹)
8280, 81ffvelrnd 6316 . . . . . . . . . 10 ((𝜑𝑥 ∈ (ran 𝑄 ∩ dom 𝐹)) → (𝐹𝑥) ∈ ℝ)
8382recnd 10012 . . . . . . . . 9 ((𝜑𝑥 ∈ (ran 𝑄 ∩ dom 𝐹)) → (𝐹𝑥) ∈ ℂ)
8483abscld 14109 . . . . . . . 8 ((𝜑𝑥 ∈ (ran 𝑄 ∩ dom 𝐹)) → (abs‘(𝐹𝑥)) ∈ ℝ)
8575, 79, 84syl2anc 692 . . . . . . 7 (((𝜑𝑤 = (ran 𝑄 ∩ dom 𝐹)) ∧ 𝑥𝑤) → (abs‘(𝐹𝑥)) ∈ ℝ)
8685ralrimiva 2960 . . . . . 6 ((𝜑𝑤 = (ran 𝑄 ∩ dom 𝐹)) → ∀𝑥𝑤 (abs‘(𝐹𝑥)) ∈ ℝ)
87 fimaxre3 10914 . . . . . 6 ((𝑤 ∈ Fin ∧ ∀𝑥𝑤 (abs‘(𝐹𝑥)) ∈ ℝ) → ∃𝑦 ∈ ℝ ∀𝑥𝑤 (abs‘(𝐹𝑥)) ≤ 𝑦)
8874, 86, 87syl2anc 692 . . . . 5 ((𝜑𝑤 = (ran 𝑄 ∩ dom 𝐹)) → ∃𝑦 ∈ ℝ ∀𝑥𝑤 (abs‘(𝐹𝑥)) ≤ 𝑦)
8988adantlr 750 . . . 4 (((𝜑𝑤 ∈ {(ran 𝑄 ∩ dom 𝐹), ran 𝐼}) ∧ 𝑤 = (ran 𝑄 ∩ dom 𝐹)) → ∃𝑦 ∈ ℝ ∀𝑥𝑤 (abs‘(𝐹𝑥)) ≤ 𝑦)
90 simpll 789 . . . . 5 (((𝜑𝑤 ∈ {(ran 𝑄 ∩ dom 𝐹), ran 𝐼}) ∧ ¬ 𝑤 = (ran 𝑄 ∩ dom 𝐹)) → 𝜑)
91 neqne 2798 . . . . . . 7 𝑤 = (ran 𝑄 ∩ dom 𝐹) → 𝑤 ≠ (ran 𝑄 ∩ dom 𝐹))
92 elprn1 39269 . . . . . . 7 ((𝑤 ∈ {(ran 𝑄 ∩ dom 𝐹), ran 𝐼} ∧ 𝑤 ≠ (ran 𝑄 ∩ dom 𝐹)) → 𝑤 = ran 𝐼)
9391, 92sylan2 491 . . . . . 6 ((𝑤 ∈ {(ran 𝑄 ∩ dom 𝐹), ran 𝐼} ∧ ¬ 𝑤 = (ran 𝑄 ∩ dom 𝐹)) → 𝑤 = ran 𝐼)
9493adantll 749 . . . . 5 (((𝜑𝑤 ∈ {(ran 𝑄 ∩ dom 𝐹), ran 𝐼}) ∧ ¬ 𝑤 = (ran 𝑄 ∩ dom 𝐹)) → 𝑤 = ran 𝐼)
95 fzofi 12713 . . . . . . . 8 (0..^𝑀) ∈ Fin
9616rnmptfi 38825 . . . . . . . 8 ((0..^𝑀) ∈ Fin → ran 𝐼 ∈ Fin)
9795, 96ax-mp 5 . . . . . . 7 ran 𝐼 ∈ Fin
9897a1i 11 . . . . . 6 ((𝜑𝑤 = ran 𝐼) → ran 𝐼 ∈ Fin)
993adantr 481 . . . . . . . . . 10 ((𝜑𝑥 ran 𝐼) → 𝐹:dom 𝐹⟶ℝ)
10099, 60ffvelrnd 6316 . . . . . . . . 9 ((𝜑𝑥 ran 𝐼) → (𝐹𝑥) ∈ ℝ)
101100recnd 10012 . . . . . . . 8 ((𝜑𝑥 ran 𝐼) → (𝐹𝑥) ∈ ℂ)
102101adantlr 750 . . . . . . 7 (((𝜑𝑤 = ran 𝐼) ∧ 𝑥 ran 𝐼) → (𝐹𝑥) ∈ ℂ)
103102abscld 14109 . . . . . 6 (((𝜑𝑤 = ran 𝐼) ∧ 𝑥 ran 𝐼) → (abs‘(𝐹𝑥)) ∈ ℝ)
10439, 16fnmpti 5979 . . . . . . . . . . 11 𝐼 Fn (0..^𝑀)
105 fvelrnb 6200 . . . . . . . . . . 11 (𝐼 Fn (0..^𝑀) → (𝑡 ∈ ran 𝐼 ↔ ∃𝑖 ∈ (0..^𝑀)(𝐼𝑖) = 𝑡))
106104, 105ax-mp 5 . . . . . . . . . 10 (𝑡 ∈ ran 𝐼 ↔ ∃𝑖 ∈ (0..^𝑀)(𝐼𝑖) = 𝑡)
107106biimpi 206 . . . . . . . . 9 (𝑡 ∈ ran 𝐼 → ∃𝑖 ∈ (0..^𝑀)(𝐼𝑖) = 𝑡)
108107adantl 482 . . . . . . . 8 ((𝜑𝑡 ∈ ran 𝐼) → ∃𝑖 ∈ (0..^𝑀)(𝐼𝑖) = 𝑡)
1097adantr 481 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑄:(0...𝑀)⟶ℝ)
110 elfzofz 12426 . . . . . . . . . . . . . . . 16 (𝑖 ∈ (0..^𝑀) → 𝑖 ∈ (0...𝑀))
111110adantl 482 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑖 ∈ (0...𝑀))
112109, 111ffvelrnd 6316 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) ∈ ℝ)
113 fzofzp1 12506 . . . . . . . . . . . . . . . 16 (𝑖 ∈ (0..^𝑀) → (𝑖 + 1) ∈ (0...𝑀))
114113adantl 482 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑖 + 1) ∈ (0...𝑀))
115109, 114ffvelrnd 6316 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈ ℝ)
116 fourierdlem71.l . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
117 fourierdlem71.r . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
118112, 115, 46, 116, 117cncfioobd 39414 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → ∃𝑏 ∈ ℝ ∀𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥)) ≤ 𝑏)
1191183adant3 1079 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐼𝑖) = 𝑡) → ∃𝑏 ∈ ℝ ∀𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥)) ≤ 𝑏)
120 fvres 6164 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) → ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥) = (𝐹𝑥))
121120fveq2d 6152 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) → (abs‘((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥)) = (abs‘(𝐹𝑥)))
122121breq1d 4623 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) → ((abs‘((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥)) ≤ 𝑏 ↔ (abs‘(𝐹𝑥)) ≤ 𝑏))
123122adantl 482 . . . . . . . . . . . . . . . 16 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → ((abs‘((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥)) ≤ 𝑏 ↔ (abs‘(𝐹𝑥)) ≤ 𝑏))
124123ralbidva 2979 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0..^𝑀)) → (∀𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥)) ≤ 𝑏 ↔ ∀𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘(𝐹𝑥)) ≤ 𝑏))
125124rexbidv 3045 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → (∃𝑏 ∈ ℝ ∀𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥)) ≤ 𝑏 ↔ ∃𝑏 ∈ ℝ ∀𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘(𝐹𝑥)) ≤ 𝑏))
1261253adant3 1079 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐼𝑖) = 𝑡) → (∃𝑏 ∈ ℝ ∀𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥)) ≤ 𝑏 ↔ ∃𝑏 ∈ ℝ ∀𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘(𝐹𝑥)) ≤ 𝑏))
12739, 44mpan2 706 . . . . . . . . . . . . . . . . 17 (𝑖 ∈ (0..^𝑀) → (𝐼𝑖) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
128 id 22 . . . . . . . . . . . . . . . . 17 ((𝐼𝑖) = 𝑡 → (𝐼𝑖) = 𝑡)
129127, 128sylan9req 2676 . . . . . . . . . . . . . . . 16 ((𝑖 ∈ (0..^𝑀) ∧ (𝐼𝑖) = 𝑡) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) = 𝑡)
1301293adant1 1077 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐼𝑖) = 𝑡) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) = 𝑡)
131130raleqdv 3133 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐼𝑖) = 𝑡) → (∀𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘(𝐹𝑥)) ≤ 𝑏 ↔ ∀𝑥𝑡 (abs‘(𝐹𝑥)) ≤ 𝑏))
132131rexbidv 3045 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐼𝑖) = 𝑡) → (∃𝑏 ∈ ℝ ∀𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘(𝐹𝑥)) ≤ 𝑏 ↔ ∃𝑏 ∈ ℝ ∀𝑥𝑡 (abs‘(𝐹𝑥)) ≤ 𝑏))
133126, 132bitrd 268 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐼𝑖) = 𝑡) → (∃𝑏 ∈ ℝ ∀𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥)) ≤ 𝑏 ↔ ∃𝑏 ∈ ℝ ∀𝑥𝑡 (abs‘(𝐹𝑥)) ≤ 𝑏))
134119, 133mpbid 222 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐼𝑖) = 𝑡) → ∃𝑏 ∈ ℝ ∀𝑥𝑡 (abs‘(𝐹𝑥)) ≤ 𝑏)
1351343exp 1261 . . . . . . . . . 10 (𝜑 → (𝑖 ∈ (0..^𝑀) → ((𝐼𝑖) = 𝑡 → ∃𝑏 ∈ ℝ ∀𝑥𝑡 (abs‘(𝐹𝑥)) ≤ 𝑏)))
136135adantr 481 . . . . . . . . 9 ((𝜑𝑡 ∈ ran 𝐼) → (𝑖 ∈ (0..^𝑀) → ((𝐼𝑖) = 𝑡 → ∃𝑏 ∈ ℝ ∀𝑥𝑡 (abs‘(𝐹𝑥)) ≤ 𝑏)))
137136rexlimdv 3023 . . . . . . . 8 ((𝜑𝑡 ∈ ran 𝐼) → (∃𝑖 ∈ (0..^𝑀)(𝐼𝑖) = 𝑡 → ∃𝑏 ∈ ℝ ∀𝑥𝑡 (abs‘(𝐹𝑥)) ≤ 𝑏))
138108, 137mpd 15 . . . . . . 7 ((𝜑𝑡 ∈ ran 𝐼) → ∃𝑏 ∈ ℝ ∀𝑥𝑡 (abs‘(𝐹𝑥)) ≤ 𝑏)
139138adantlr 750 . . . . . 6 (((𝜑𝑤 = ran 𝐼) ∧ 𝑡 ∈ ran 𝐼) → ∃𝑏 ∈ ℝ ∀𝑥𝑡 (abs‘(𝐹𝑥)) ≤ 𝑏)
140 eqimss 3636 . . . . . . 7 (𝑤 = ran 𝐼𝑤 ran 𝐼)
141140adantl 482 . . . . . 6 ((𝜑𝑤 = ran 𝐼) → 𝑤 ran 𝐼)
14298, 103, 139, 141ssfiunibd 38987 . . . . 5 ((𝜑𝑤 = ran 𝐼) → ∃𝑦 ∈ ℝ ∀𝑥𝑤 (abs‘(𝐹𝑥)) ≤ 𝑦)
14390, 94, 142syl2anc 692 . . . 4 (((𝜑𝑤 ∈ {(ran 𝑄 ∩ dom 𝐹), ran 𝐼}) ∧ ¬ 𝑤 = (ran 𝑄 ∩ dom 𝐹)) → ∃𝑦 ∈ ℝ ∀𝑥𝑤 (abs‘(𝐹𝑥)) ≤ 𝑦)
14489, 143pm2.61dan 831 . . 3 ((𝜑𝑤 ∈ {(ran 𝑄 ∩ dom 𝐹), ran 𝐼}) → ∃𝑦 ∈ ℝ ∀𝑥𝑤 (abs‘(𝐹𝑥)) ≤ 𝑦)
145 simpr 477 . . . . . . . . 9 (((𝜑𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)) ∧ 𝑥 ∈ ran 𝑄) → 𝑥 ∈ ran 𝑄)
146 elinel2 3778 . . . . . . . . . 10 (𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹) → 𝑥 ∈ dom 𝐹)
147146ad2antlr 762 . . . . . . . . 9 (((𝜑𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)) ∧ 𝑥 ∈ ran 𝑄) → 𝑥 ∈ dom 𝐹)
148145, 147elind 3776 . . . . . . . 8 (((𝜑𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)) ∧ 𝑥 ∈ ran 𝑄) → 𝑥 ∈ (ran 𝑄 ∩ dom 𝐹))
149 elun1 3758 . . . . . . . 8 (𝑥 ∈ (ran 𝑄 ∩ dom 𝐹) → 𝑥 ∈ ((ran 𝑄 ∩ dom 𝐹) ∪ ran 𝐼))
150148, 149syl 17 . . . . . . 7 (((𝜑𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)) ∧ 𝑥 ∈ ran 𝑄) → 𝑥 ∈ ((ran 𝑄 ∩ dom 𝐹) ∪ ran 𝐼))
151 fourierdlem71.7 . . . . . . . . . . . 12 (𝜑𝑀 ∈ ℕ)
152151ad2antrr 761 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)) ∧ ¬ 𝑥 ∈ ran 𝑄) → 𝑀 ∈ ℕ)
1537ad2antrr 761 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)) ∧ ¬ 𝑥 ∈ ran 𝑄) → 𝑄:(0...𝑀)⟶ℝ)
154 elinel1 3777 . . . . . . . . . . . . . 14 (𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹) → 𝑥 ∈ (𝐴[,]𝐵))
155154adantl 482 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)) → 𝑥 ∈ (𝐴[,]𝐵))
156 fourierdlem71.q0 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑄‘0) = 𝐴)
157156eqcomd 2627 . . . . . . . . . . . . . . 15 (𝜑𝐴 = (𝑄‘0))
158157adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)) → 𝐴 = (𝑄‘0))
159 fourierdlem71.10 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑄𝑀) = 𝐵)
160159eqcomd 2627 . . . . . . . . . . . . . . 15 (𝜑𝐵 = (𝑄𝑀))
161160adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)) → 𝐵 = (𝑄𝑀))
162158, 161oveq12d 6622 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)) → (𝐴[,]𝐵) = ((𝑄‘0)[,](𝑄𝑀)))
163155, 162eleqtrd 2700 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)) → 𝑥 ∈ ((𝑄‘0)[,](𝑄𝑀)))
164163adantr 481 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)) ∧ ¬ 𝑥 ∈ ran 𝑄) → 𝑥 ∈ ((𝑄‘0)[,](𝑄𝑀)))
165 simpr 477 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)) ∧ ¬ 𝑥 ∈ ran 𝑄) → ¬ 𝑥 ∈ ran 𝑄)
166 fveq2 6148 . . . . . . . . . . . . . 14 (𝑘 = 𝑗 → (𝑄𝑘) = (𝑄𝑗))
167166breq1d 4623 . . . . . . . . . . . . 13 (𝑘 = 𝑗 → ((𝑄𝑘) < 𝑥 ↔ (𝑄𝑗) < 𝑥))
168167cbvrabv 3185 . . . . . . . . . . . 12 {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝑥} = {𝑗 ∈ (0..^𝑀) ∣ (𝑄𝑗) < 𝑥}
169168supeq1i 8297 . . . . . . . . . . 11 sup({𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝑥}, ℝ, < ) = sup({𝑗 ∈ (0..^𝑀) ∣ (𝑄𝑗) < 𝑥}, ℝ, < )
170152, 153, 164, 165, 169fourierdlem25 39656 . . . . . . . . . 10 (((𝜑𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)) ∧ ¬ 𝑥 ∈ ran 𝑄) → ∃𝑖 ∈ (0..^𝑀)𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
17141ad2antrl 763 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑖 ∈ dom 𝐼𝑥 ∈ (𝐼𝑖))) → 𝑖 ∈ (0..^𝑀))
172 simprr 795 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑖 ∈ dom 𝐼𝑥 ∈ (𝐼𝑖))) → 𝑥 ∈ (𝐼𝑖))
173171, 127syl 17 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑖 ∈ dom 𝐼𝑥 ∈ (𝐼𝑖))) → (𝐼𝑖) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
174172, 173eleqtrd 2700 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑖 ∈ dom 𝐼𝑥 ∈ (𝐼𝑖))) → 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
175171, 174jca 554 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑖 ∈ dom 𝐼𝑥 ∈ (𝐼𝑖))) → (𝑖 ∈ (0..^𝑀) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))
176 id 22 . . . . . . . . . . . . . . . 16 (𝑖 ∈ (0..^𝑀) → 𝑖 ∈ (0..^𝑀))
177176, 40syl6eleqr 2709 . . . . . . . . . . . . . . 15 (𝑖 ∈ (0..^𝑀) → 𝑖 ∈ dom 𝐼)
178177ad2antrl 763 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))) → 𝑖 ∈ dom 𝐼)
179 simprr 795 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))) → 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
180127eqcomd 2627 . . . . . . . . . . . . . . . 16 (𝑖 ∈ (0..^𝑀) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) = (𝐼𝑖))
181180ad2antrl 763 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) = (𝐼𝑖))
182179, 181eleqtrd 2700 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))) → 𝑥 ∈ (𝐼𝑖))
183178, 182jca 554 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))) → (𝑖 ∈ dom 𝐼𝑥 ∈ (𝐼𝑖)))
184175, 183impbida 876 . . . . . . . . . . . 12 (𝜑 → ((𝑖 ∈ dom 𝐼𝑥 ∈ (𝐼𝑖)) ↔ (𝑖 ∈ (0..^𝑀) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))))
185184rexbidv2 3041 . . . . . . . . . . 11 (𝜑 → (∃𝑖 ∈ dom 𝐼 𝑥 ∈ (𝐼𝑖) ↔ ∃𝑖 ∈ (0..^𝑀)𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))
186185ad2antrr 761 . . . . . . . . . 10 (((𝜑𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)) ∧ ¬ 𝑥 ∈ ran 𝑄) → (∃𝑖 ∈ dom 𝐼 𝑥 ∈ (𝐼𝑖) ↔ ∃𝑖 ∈ (0..^𝑀)𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))
187170, 186mpbird 247 . . . . . . . . 9 (((𝜑𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)) ∧ ¬ 𝑥 ∈ ran 𝑄) → ∃𝑖 ∈ dom 𝐼 𝑥 ∈ (𝐼𝑖))
188187, 35sylibr 224 . . . . . . . 8 (((𝜑𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)) ∧ ¬ 𝑥 ∈ ran 𝑄) → 𝑥 ran 𝐼)
189 elun2 3759 . . . . . . . 8 (𝑥 ran 𝐼𝑥 ∈ ((ran 𝑄 ∩ dom 𝐹) ∪ ran 𝐼))
190188, 189syl 17 . . . . . . 7 (((𝜑𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)) ∧ ¬ 𝑥 ∈ ran 𝑄) → 𝑥 ∈ ((ran 𝑄 ∩ dom 𝐹) ∪ ran 𝐼))
191150, 190pm2.61dan 831 . . . . . 6 ((𝜑𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)) → 𝑥 ∈ ((ran 𝑄 ∩ dom 𝐹) ∪ ran 𝐼))
192191ralrimiva 2960 . . . . 5 (𝜑 → ∀𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)𝑥 ∈ ((ran 𝑄 ∩ dom 𝐹) ∪ ran 𝐼))
193 dfss3 3573 . . . . 5 (((𝐴[,]𝐵) ∩ dom 𝐹) ⊆ ((ran 𝑄 ∩ dom 𝐹) ∪ ran 𝐼) ↔ ∀𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)𝑥 ∈ ((ran 𝑄 ∩ dom 𝐹) ∪ ran 𝐼))
194192, 193sylibr 224 . . . 4 (𝜑 → ((𝐴[,]𝐵) ∩ dom 𝐹) ⊆ ((ran 𝑄 ∩ dom 𝐹) ∪ ran 𝐼))
19514, 23, 25syl2anc 692 . . . 4 (𝜑 {(ran 𝑄 ∩ dom 𝐹), ran 𝐼} = ((ran 𝑄 ∩ dom 𝐹) ∪ ran 𝐼))
196194, 195sseqtr4d 3621 . . 3 (𝜑 → ((𝐴[,]𝐵) ∩ dom 𝐹) ⊆ {(ran 𝑄 ∩ dom 𝐹), ran 𝐼})
1972, 66, 144, 196ssfiunibd 38987 . 2 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)(abs‘(𝐹𝑥)) ≤ 𝑦)
198 nfv 1840 . . . . . 6 𝑥𝜑
199 nfra1 2936 . . . . . 6 𝑥𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)(abs‘(𝐹𝑥)) ≤ 𝑦
200198, 199nfan 1825 . . . . 5 𝑥(𝜑 ∧ ∀𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)(abs‘(𝐹𝑥)) ≤ 𝑦)
201 fourierdlem71.dmf . . . . . . . . . . . . 13 (𝜑 → dom 𝐹 ⊆ ℝ)
202201sselda 3583 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ dom 𝐹) → 𝑥 ∈ ℝ)
203 fourierdlem71.b . . . . . . . . . . . . . . . . . . 19 (𝜑𝐵 ∈ ℝ)
204203adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ dom 𝐹) → 𝐵 ∈ ℝ)
205204, 202resubcld 10402 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ dom 𝐹) → (𝐵𝑥) ∈ ℝ)
206 fourierdlem71.t . . . . . . . . . . . . . . . . . . 19 𝑇 = (𝐵𝐴)
207 fourierdlem71.a . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐴 ∈ ℝ)
208203, 207resubcld 10402 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐵𝐴) ∈ ℝ)
209206, 208syl5eqel 2702 . . . . . . . . . . . . . . . . . 18 (𝜑𝑇 ∈ ℝ)
210209adantr 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ dom 𝐹) → 𝑇 ∈ ℝ)
211 fourierdlem71.altb . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐴 < 𝐵)
212207, 203posdifd 10558 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐴 < 𝐵 ↔ 0 < (𝐵𝐴)))
213211, 212mpbid 222 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → 0 < (𝐵𝐴))
214213, 206syl6breqr 4655 . . . . . . . . . . . . . . . . . . 19 (𝜑 → 0 < 𝑇)
215214gt0ne0d 10536 . . . . . . . . . . . . . . . . . 18 (𝜑𝑇 ≠ 0)
216215adantr 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ dom 𝐹) → 𝑇 ≠ 0)
217205, 210, 216redivcld 10797 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ dom 𝐹) → ((𝐵𝑥) / 𝑇) ∈ ℝ)
218217flcld 12539 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ dom 𝐹) → (⌊‘((𝐵𝑥) / 𝑇)) ∈ ℤ)
219218zred 11426 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ dom 𝐹) → (⌊‘((𝐵𝑥) / 𝑇)) ∈ ℝ)
220219, 210remulcld 10014 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ dom 𝐹) → ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇) ∈ ℝ)
221202, 220readdcld 10013 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ dom 𝐹) → (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) ∈ ℝ)
222 fourierdlem71.e . . . . . . . . . . . . 13 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
223222fvmpt2 6248 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ ∧ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) ∈ ℝ) → (𝐸𝑥) = (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
224202, 221, 223syl2anc 692 . . . . . . . . . . 11 ((𝜑𝑥 ∈ dom 𝐹) → (𝐸𝑥) = (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
225224fveq2d 6152 . . . . . . . . . 10 ((𝜑𝑥 ∈ dom 𝐹) → (𝐹‘(𝐸𝑥)) = (𝐹‘(𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇))))
226 fvex 6158 . . . . . . . . . . . 12 (⌊‘((𝐵𝑥) / 𝑇)) ∈ V
227 eleq1 2686 . . . . . . . . . . . . . 14 (𝑘 = (⌊‘((𝐵𝑥) / 𝑇)) → (𝑘 ∈ ℤ ↔ (⌊‘((𝐵𝑥) / 𝑇)) ∈ ℤ))
228227anbi2d 739 . . . . . . . . . . . . 13 (𝑘 = (⌊‘((𝐵𝑥) / 𝑇)) → (((𝜑𝑥 ∈ dom 𝐹) ∧ 𝑘 ∈ ℤ) ↔ ((𝜑𝑥 ∈ dom 𝐹) ∧ (⌊‘((𝐵𝑥) / 𝑇)) ∈ ℤ)))
229 oveq1 6611 . . . . . . . . . . . . . . . 16 (𝑘 = (⌊‘((𝐵𝑥) / 𝑇)) → (𝑘 · 𝑇) = ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇))
230229oveq2d 6620 . . . . . . . . . . . . . . 15 (𝑘 = (⌊‘((𝐵𝑥) / 𝑇)) → (𝑥 + (𝑘 · 𝑇)) = (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
231230fveq2d 6152 . . . . . . . . . . . . . 14 (𝑘 = (⌊‘((𝐵𝑥) / 𝑇)) → (𝐹‘(𝑥 + (𝑘 · 𝑇))) = (𝐹‘(𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇))))
232231eqeq1d 2623 . . . . . . . . . . . . 13 (𝑘 = (⌊‘((𝐵𝑥) / 𝑇)) → ((𝐹‘(𝑥 + (𝑘 · 𝑇))) = (𝐹𝑥) ↔ (𝐹‘(𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇))) = (𝐹𝑥)))
233228, 232imbi12d 334 . . . . . . . . . . . 12 (𝑘 = (⌊‘((𝐵𝑥) / 𝑇)) → ((((𝜑𝑥 ∈ dom 𝐹) ∧ 𝑘 ∈ ℤ) → (𝐹‘(𝑥 + (𝑘 · 𝑇))) = (𝐹𝑥)) ↔ (((𝜑𝑥 ∈ dom 𝐹) ∧ (⌊‘((𝐵𝑥) / 𝑇)) ∈ ℤ) → (𝐹‘(𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇))) = (𝐹𝑥))))
234 fourierdlem71.fxpt . . . . . . . . . . . 12 (((𝜑𝑥 ∈ dom 𝐹) ∧ 𝑘 ∈ ℤ) → (𝐹‘(𝑥 + (𝑘 · 𝑇))) = (𝐹𝑥))
235226, 233, 234vtocl 3245 . . . . . . . . . . 11 (((𝜑𝑥 ∈ dom 𝐹) ∧ (⌊‘((𝐵𝑥) / 𝑇)) ∈ ℤ) → (𝐹‘(𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇))) = (𝐹𝑥))
236218, 235mpdan 701 . . . . . . . . . 10 ((𝜑𝑥 ∈ dom 𝐹) → (𝐹‘(𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇))) = (𝐹𝑥))
237225, 236eqtr2d 2656 . . . . . . . . 9 ((𝜑𝑥 ∈ dom 𝐹) → (𝐹𝑥) = (𝐹‘(𝐸𝑥)))
238237fveq2d 6152 . . . . . . . 8 ((𝜑𝑥 ∈ dom 𝐹) → (abs‘(𝐹𝑥)) = (abs‘(𝐹‘(𝐸𝑥))))
239238adantlr 750 . . . . . . 7 (((𝜑 ∧ ∀𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)(abs‘(𝐹𝑥)) ≤ 𝑦) ∧ 𝑥 ∈ dom 𝐹) → (abs‘(𝐹𝑥)) = (abs‘(𝐹‘(𝐸𝑥))))
240 fveq2 6148 . . . . . . . . . . . . 13 (𝑥 = 𝑤 → (𝐹𝑥) = (𝐹𝑤))
241240fveq2d 6152 . . . . . . . . . . . 12 (𝑥 = 𝑤 → (abs‘(𝐹𝑥)) = (abs‘(𝐹𝑤)))
242241breq1d 4623 . . . . . . . . . . 11 (𝑥 = 𝑤 → ((abs‘(𝐹𝑥)) ≤ 𝑦 ↔ (abs‘(𝐹𝑤)) ≤ 𝑦))
243242cbvralv 3159 . . . . . . . . . 10 (∀𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)(abs‘(𝐹𝑥)) ≤ 𝑦 ↔ ∀𝑤 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)(abs‘(𝐹𝑤)) ≤ 𝑦)
244243biimpi 206 . . . . . . . . 9 (∀𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)(abs‘(𝐹𝑥)) ≤ 𝑦 → ∀𝑤 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)(abs‘(𝐹𝑤)) ≤ 𝑦)
245244ad2antlr 762 . . . . . . . 8 (((𝜑 ∧ ∀𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)(abs‘(𝐹𝑥)) ≤ 𝑦) ∧ 𝑥 ∈ dom 𝐹) → ∀𝑤 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)(abs‘(𝐹𝑤)) ≤ 𝑦)
246 iocssicc 12203 . . . . . . . . . . 11 (𝐴(,]𝐵) ⊆ (𝐴[,]𝐵)
247207adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ dom 𝐹) → 𝐴 ∈ ℝ)
248211adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ dom 𝐹) → 𝐴 < 𝐵)
249 id 22 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑦𝑥 = 𝑦)
250 oveq2 6612 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑦 → (𝐵𝑥) = (𝐵𝑦))
251250oveq1d 6619 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑦 → ((𝐵𝑥) / 𝑇) = ((𝐵𝑦) / 𝑇))
252251fveq2d 6152 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑦 → (⌊‘((𝐵𝑥) / 𝑇)) = (⌊‘((𝐵𝑦) / 𝑇)))
253252oveq1d 6619 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑦 → ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇) = ((⌊‘((𝐵𝑦) / 𝑇)) · 𝑇))
254249, 253oveq12d 6622 . . . . . . . . . . . . . . 15 (𝑥 = 𝑦 → (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) = (𝑦 + ((⌊‘((𝐵𝑦) / 𝑇)) · 𝑇)))
255254cbvmptv 4710 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇))) = (𝑦 ∈ ℝ ↦ (𝑦 + ((⌊‘((𝐵𝑦) / 𝑇)) · 𝑇)))
256222, 255eqtri 2643 . . . . . . . . . . . . 13 𝐸 = (𝑦 ∈ ℝ ↦ (𝑦 + ((⌊‘((𝐵𝑦) / 𝑇)) · 𝑇)))
257247, 204, 248, 206, 256fourierdlem4 39635 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ dom 𝐹) → 𝐸:ℝ⟶(𝐴(,]𝐵))
258257, 202ffvelrnd 6316 . . . . . . . . . . 11 ((𝜑𝑥 ∈ dom 𝐹) → (𝐸𝑥) ∈ (𝐴(,]𝐵))
259246, 258sseldi 3581 . . . . . . . . . 10 ((𝜑𝑥 ∈ dom 𝐹) → (𝐸𝑥) ∈ (𝐴[,]𝐵))
260230eleq1d 2683 . . . . . . . . . . . . . 14 (𝑘 = (⌊‘((𝐵𝑥) / 𝑇)) → ((𝑥 + (𝑘 · 𝑇)) ∈ dom 𝐹 ↔ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) ∈ dom 𝐹))
261228, 260imbi12d 334 . . . . . . . . . . . . 13 (𝑘 = (⌊‘((𝐵𝑥) / 𝑇)) → ((((𝜑𝑥 ∈ dom 𝐹) ∧ 𝑘 ∈ ℤ) → (𝑥 + (𝑘 · 𝑇)) ∈ dom 𝐹) ↔ (((𝜑𝑥 ∈ dom 𝐹) ∧ (⌊‘((𝐵𝑥) / 𝑇)) ∈ ℤ) → (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) ∈ dom 𝐹)))
262 fourierdlem71.xpt . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ dom 𝐹) ∧ 𝑘 ∈ ℤ) → (𝑥 + (𝑘 · 𝑇)) ∈ dom 𝐹)
263226, 261, 262vtocl 3245 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ dom 𝐹) ∧ (⌊‘((𝐵𝑥) / 𝑇)) ∈ ℤ) → (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) ∈ dom 𝐹)
264218, 263mpdan 701 . . . . . . . . . . 11 ((𝜑𝑥 ∈ dom 𝐹) → (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) ∈ dom 𝐹)
265224, 264eqeltrd 2698 . . . . . . . . . 10 ((𝜑𝑥 ∈ dom 𝐹) → (𝐸𝑥) ∈ dom 𝐹)
266259, 265elind 3776 . . . . . . . . 9 ((𝜑𝑥 ∈ dom 𝐹) → (𝐸𝑥) ∈ ((𝐴[,]𝐵) ∩ dom 𝐹))
267266adantlr 750 . . . . . . . 8 (((𝜑 ∧ ∀𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)(abs‘(𝐹𝑥)) ≤ 𝑦) ∧ 𝑥 ∈ dom 𝐹) → (𝐸𝑥) ∈ ((𝐴[,]𝐵) ∩ dom 𝐹))
268 fveq2 6148 . . . . . . . . . . 11 (𝑤 = (𝐸𝑥) → (𝐹𝑤) = (𝐹‘(𝐸𝑥)))
269268fveq2d 6152 . . . . . . . . . 10 (𝑤 = (𝐸𝑥) → (abs‘(𝐹𝑤)) = (abs‘(𝐹‘(𝐸𝑥))))
270269breq1d 4623 . . . . . . . . 9 (𝑤 = (𝐸𝑥) → ((abs‘(𝐹𝑤)) ≤ 𝑦 ↔ (abs‘(𝐹‘(𝐸𝑥))) ≤ 𝑦))
271270rspccva 3294 . . . . . . . 8 ((∀𝑤 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)(abs‘(𝐹𝑤)) ≤ 𝑦 ∧ (𝐸𝑥) ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)) → (abs‘(𝐹‘(𝐸𝑥))) ≤ 𝑦)
272245, 267, 271syl2anc 692 . . . . . . 7 (((𝜑 ∧ ∀𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)(abs‘(𝐹𝑥)) ≤ 𝑦) ∧ 𝑥 ∈ dom 𝐹) → (abs‘(𝐹‘(𝐸𝑥))) ≤ 𝑦)
273239, 272eqbrtrd 4635 . . . . . 6 (((𝜑 ∧ ∀𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)(abs‘(𝐹𝑥)) ≤ 𝑦) ∧ 𝑥 ∈ dom 𝐹) → (abs‘(𝐹𝑥)) ≤ 𝑦)
274273ex 450 . . . . 5 ((𝜑 ∧ ∀𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)(abs‘(𝐹𝑥)) ≤ 𝑦) → (𝑥 ∈ dom 𝐹 → (abs‘(𝐹𝑥)) ≤ 𝑦))
275200, 274ralrimi 2951 . . . 4 ((𝜑 ∧ ∀𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)(abs‘(𝐹𝑥)) ≤ 𝑦) → ∀𝑥 ∈ dom 𝐹(abs‘(𝐹𝑥)) ≤ 𝑦)
276275ex 450 . . 3 (𝜑 → (∀𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)(abs‘(𝐹𝑥)) ≤ 𝑦 → ∀𝑥 ∈ dom 𝐹(abs‘(𝐹𝑥)) ≤ 𝑦))
277276reximdv 3010 . 2 (𝜑 → (∃𝑦 ∈ ℝ ∀𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)(abs‘(𝐹𝑥)) ≤ 𝑦 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ dom 𝐹(abs‘(𝐹𝑥)) ≤ 𝑦))
278197, 277mpd 15 1 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ dom 𝐹(abs‘(𝐹𝑥)) ≤ 𝑦)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wcel 1987  wne 2790  wral 2907  wrex 2908  {crab 2911  Vcvv 3186  cun 3553  cin 3554  wss 3555  {cpr 4150   cuni 4402   class class class wbr 4613  cmpt 4673  dom cdm 5074  ran crn 5075  cres 5076  Fun wfun 5841   Fn wfn 5842  wf 5843  cfv 5847  (class class class)co 6604  Fincfn 7899  supcsup 8290  cc 9878  cr 9879  0cc0 9880  1c1 9881   + caddc 9883   · cmul 9885   < clt 10018  cle 10019  cmin 10210   / cdiv 10628  cn 10964  cz 11321  (,)cioo 12117  (,]cioc 12118  [,]cicc 12120  ...cfz 12268  ..^cfzo 12406  cfl 12531  abscabs 13908  cnccncf 22587   lim climc 23532
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-inf2 8482  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958  ax-mulf 9960
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-iin 4488  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-se 5034  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-isom 5856  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-of 6850  df-om 7013  df-1st 7113  df-2nd 7114  df-supp 7241  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-2o 7506  df-oadd 7509  df-er 7687  df-map 7804  df-pm 7805  df-ixp 7853  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-fsupp 8220  df-fi 8261  df-sup 8292  df-inf 8293  df-oi 8359  df-card 8709  df-cda 8934  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-3 11024  df-4 11025  df-5 11026  df-6 11027  df-7 11028  df-8 11029  df-9 11030  df-n0 11237  df-z 11322  df-dec 11438  df-uz 11632  df-q 11733  df-rp 11777  df-xneg 11890  df-xadd 11891  df-xmul 11892  df-ioo 12121  df-ioc 12122  df-ico 12123  df-icc 12124  df-fz 12269  df-fzo 12407  df-fl 12533  df-seq 12742  df-exp 12801  df-hash 13058  df-cj 13773  df-re 13774  df-im 13775  df-sqrt 13909  df-abs 13910  df-struct 15783  df-ndx 15784  df-slot 15785  df-base 15786  df-sets 15787  df-ress 15788  df-plusg 15875  df-mulr 15876  df-starv 15877  df-sca 15878  df-vsca 15879  df-ip 15880  df-tset 15881  df-ple 15882  df-ds 15885  df-unif 15886  df-hom 15887  df-cco 15888  df-rest 16004  df-topn 16005  df-0g 16023  df-gsum 16024  df-topgen 16025  df-pt 16026  df-prds 16029  df-xrs 16083  df-qtop 16088  df-imas 16089  df-xps 16091  df-mre 16167  df-mrc 16168  df-acs 16170  df-mgm 17163  df-sgrp 17205  df-mnd 17216  df-submnd 17257  df-mulg 17462  df-cntz 17671  df-cmn 18116  df-psmet 19657  df-xmet 19658  df-met 19659  df-bl 19660  df-mopn 19661  df-cnfld 19666  df-top 20621  df-bases 20622  df-topon 20623  df-topsp 20624  df-cld 20733  df-ntr 20734  df-cls 20735  df-cn 20941  df-cnp 20942  df-cmp 21100  df-tx 21275  df-hmeo 21468  df-xms 22035  df-ms 22036  df-tms 22037  df-cncf 22589  df-limc 23536
This theorem is referenced by:  fourierdlem94  39724  fourierdlem113  39743
  Copyright terms: Public domain W3C validator