Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem84 Structured version   Visualization version   GIF version

Theorem fourierdlem84 39740
 Description: If 𝐹 is piecewise coninuous and 𝐷 is continuous, then 𝐺 is continuous. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem84.1 (𝜑𝐴 ∈ ℝ)
fourierdlem84.2 (𝜑𝐵 ∈ ℝ)
fourierdlem84.f (𝜑𝐹:ℝ⟶ℝ)
fourierdlem84.xre (𝜑𝑋 ∈ ℝ)
fourierdlem84.p 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = (𝐴 + 𝑋) ∧ (𝑝𝑚) = (𝐵 + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
fourierdlem84.m (𝜑𝑀 ∈ ℕ)
fourierdlem84.v (𝜑𝑉 ∈ (𝑃𝑀))
fourierdlem84.fcn ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℂ))
fourierdlem84.r ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑉𝑖)))
fourierdlem84.l ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑉‘(𝑖 + 1))))
fourierdlem84.q 𝑄 = (𝑖 ∈ (0...𝑀) ↦ ((𝑉𝑖) − 𝑋))
fourierdlem84.o 𝑂 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
fourierdlem84.d (𝜑𝐷 ∈ (ℝ–cn→ℝ))
fourierdlem84.g 𝐺 = (𝑠 ∈ (𝐴[,]𝐵) ↦ ((𝐹‘(𝑋 + 𝑠)) · (𝐷𝑠)))
Assertion
Ref Expression
fourierdlem84 (𝜑𝐺 ∈ 𝐿1)
Distinct variable groups:   𝐴,𝑖,𝑚,𝑝   𝐴,𝑠,𝑖   𝐵,𝑖,𝑚,𝑝   𝐵,𝑠   𝐷,𝑠   𝐹,𝑠   𝑖,𝐺   𝐿,𝑠   𝑖,𝑀,𝑠   𝑚,𝑀,𝑝   𝑄,𝑖,𝑠   𝑄,𝑝   𝑅,𝑠   𝑖,𝑉,𝑠   𝑉,𝑝   𝑖,𝑋,𝑠   𝑚,𝑋,𝑝   𝜑,𝑖,𝑠
Allowed substitution hints:   𝜑(𝑚,𝑝)   𝐷(𝑖,𝑚,𝑝)   𝑃(𝑖,𝑚,𝑠,𝑝)   𝑄(𝑚)   𝑅(𝑖,𝑚,𝑝)   𝐹(𝑖,𝑚,𝑝)   𝐺(𝑚,𝑠,𝑝)   𝐿(𝑖,𝑚,𝑝)   𝑂(𝑖,𝑚,𝑠,𝑝)   𝑉(𝑚)

Proof of Theorem fourierdlem84
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 fourierdlem84.o . 2 𝑂 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
2 fourierdlem84.m . 2 (𝜑𝑀 ∈ ℕ)
3 fourierdlem84.1 . . 3 (𝜑𝐴 ∈ ℝ)
4 fourierdlem84.2 . . 3 (𝜑𝐵 ∈ ℝ)
5 fourierdlem84.xre . . 3 (𝜑𝑋 ∈ ℝ)
6 fourierdlem84.p . . 3 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = (𝐴 + 𝑋) ∧ (𝑝𝑚) = (𝐵 + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
7 fourierdlem84.v . . 3 (𝜑𝑉 ∈ (𝑃𝑀))
8 fourierdlem84.q . . 3 𝑄 = (𝑖 ∈ (0...𝑀) ↦ ((𝑉𝑖) − 𝑋))
93, 4, 5, 6, 1, 2, 7, 8fourierdlem14 39671 . 2 (𝜑𝑄 ∈ (𝑂𝑀))
10 fourierdlem84.f . . . . . . 7 (𝜑𝐹:ℝ⟶ℝ)
1110adantr 481 . . . . . 6 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → 𝐹:ℝ⟶ℝ)
125adantr 481 . . . . . . 7 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → 𝑋 ∈ ℝ)
133adantr 481 . . . . . . . 8 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → 𝐴 ∈ ℝ)
144adantr 481 . . . . . . . 8 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → 𝐵 ∈ ℝ)
15 simpr 477 . . . . . . . 8 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → 𝑠 ∈ (𝐴[,]𝐵))
16 eliccre 39170 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑠 ∈ (𝐴[,]𝐵)) → 𝑠 ∈ ℝ)
1713, 14, 15, 16syl3anc 1323 . . . . . . 7 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → 𝑠 ∈ ℝ)
1812, 17readdcld 10021 . . . . . 6 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → (𝑋 + 𝑠) ∈ ℝ)
1911, 18ffvelrnd 6321 . . . . 5 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → (𝐹‘(𝑋 + 𝑠)) ∈ ℝ)
20 fourierdlem84.d . . . . . . . 8 (𝜑𝐷 ∈ (ℝ–cn→ℝ))
21 cncff 22619 . . . . . . . 8 (𝐷 ∈ (ℝ–cn→ℝ) → 𝐷:ℝ⟶ℝ)
2220, 21syl 17 . . . . . . 7 (𝜑𝐷:ℝ⟶ℝ)
2322adantr 481 . . . . . 6 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → 𝐷:ℝ⟶ℝ)
2423, 17ffvelrnd 6321 . . . . 5 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → (𝐷𝑠) ∈ ℝ)
2519, 24remulcld 10022 . . . 4 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → ((𝐹‘(𝑋 + 𝑠)) · (𝐷𝑠)) ∈ ℝ)
2625recnd 10020 . . 3 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → ((𝐹‘(𝑋 + 𝑠)) · (𝐷𝑠)) ∈ ℂ)
27 fourierdlem84.g . . 3 𝐺 = (𝑠 ∈ (𝐴[,]𝐵) ↦ ((𝐹‘(𝑋 + 𝑠)) · (𝐷𝑠)))
2826, 27fmptd 6346 . 2 (𝜑𝐺:(𝐴[,]𝐵)⟶ℂ)
2927a1i 11 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐺 = (𝑠 ∈ (𝐴[,]𝐵) ↦ ((𝐹‘(𝑋 + 𝑠)) · (𝐷𝑠))))
3029reseq1d 5360 . . . 4 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((𝑠 ∈ (𝐴[,]𝐵) ↦ ((𝐹‘(𝑋 + 𝑠)) · (𝐷𝑠))) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))
31 ioossicc 12209 . . . . . 6 ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))
323rexrd 10041 . . . . . . . 8 (𝜑𝐴 ∈ ℝ*)
3332adantr 481 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐴 ∈ ℝ*)
344rexrd 10041 . . . . . . . 8 (𝜑𝐵 ∈ ℝ*)
3534adantr 481 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐵 ∈ ℝ*)
361, 2, 9fourierdlem15 39672 . . . . . . . 8 (𝜑𝑄:(0...𝑀)⟶(𝐴[,]𝐵))
3736adantr 481 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑄:(0...𝑀)⟶(𝐴[,]𝐵))
38 simpr 477 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑖 ∈ (0..^𝑀))
3933, 35, 37, 38fourierdlem8 39665 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))) ⊆ (𝐴[,]𝐵))
4031, 39syl5ss 3598 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ (𝐴[,]𝐵))
4140resmptd 5416 . . . 4 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑠 ∈ (𝐴[,]𝐵) ↦ ((𝐹‘(𝑋 + 𝑠)) · (𝐷𝑠))) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐹‘(𝑋 + 𝑠)) · (𝐷𝑠))))
4230, 41eqtrd 2655 . . 3 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐹‘(𝑋 + 𝑠)) · (𝐷𝑠))))
433, 5readdcld 10021 . . . . . . . . . . . . . 14 (𝜑 → (𝐴 + 𝑋) ∈ ℝ)
444, 5readdcld 10021 . . . . . . . . . . . . . 14 (𝜑 → (𝐵 + 𝑋) ∈ ℝ)
4543, 44iccssred 39169 . . . . . . . . . . . . 13 (𝜑 → ((𝐴 + 𝑋)[,](𝐵 + 𝑋)) ⊆ ℝ)
4645adantr 481 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝐴 + 𝑋)[,](𝐵 + 𝑋)) ⊆ ℝ)
476, 2, 7fourierdlem15 39672 . . . . . . . . . . . . . 14 (𝜑𝑉:(0...𝑀)⟶((𝐴 + 𝑋)[,](𝐵 + 𝑋)))
4847adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑉:(0...𝑀)⟶((𝐴 + 𝑋)[,](𝐵 + 𝑋)))
49 elfzofz 12434 . . . . . . . . . . . . . 14 (𝑖 ∈ (0..^𝑀) → 𝑖 ∈ (0...𝑀))
5049adantl 482 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑖 ∈ (0...𝑀))
5148, 50ffvelrnd 6321 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑉𝑖) ∈ ((𝐴 + 𝑋)[,](𝐵 + 𝑋)))
5246, 51sseldd 3588 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑉𝑖) ∈ ℝ)
5352rexrd 10041 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑉𝑖) ∈ ℝ*)
5453adantr 481 . . . . . . . . 9 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑉𝑖) ∈ ℝ*)
55 fzofzp1 12514 . . . . . . . . . . . . . 14 (𝑖 ∈ (0..^𝑀) → (𝑖 + 1) ∈ (0...𝑀))
5655adantl 482 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑖 + 1) ∈ (0...𝑀))
5748, 56ffvelrnd 6321 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑉‘(𝑖 + 1)) ∈ ((𝐴 + 𝑋)[,](𝐵 + 𝑋)))
5846, 57sseldd 3588 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑉‘(𝑖 + 1)) ∈ ℝ)
5958rexrd 10041 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑉‘(𝑖 + 1)) ∈ ℝ*)
6059adantr 481 . . . . . . . . 9 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑉‘(𝑖 + 1)) ∈ ℝ*)
615ad2antrr 761 . . . . . . . . . 10 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑋 ∈ ℝ)
62 elioore 12155 . . . . . . . . . . 11 (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) → 𝑠 ∈ ℝ)
6362adantl 482 . . . . . . . . . 10 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑠 ∈ ℝ)
6461, 63readdcld 10021 . . . . . . . . 9 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑋 + 𝑠) ∈ ℝ)
655recnd 10020 . . . . . . . . . . . . . 14 (𝜑𝑋 ∈ ℂ)
6665adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑋 ∈ ℂ)
673, 4iccssred 39169 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
6867adantr 481 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐴[,]𝐵) ⊆ ℝ)
6937, 50ffvelrnd 6321 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) ∈ (𝐴[,]𝐵))
7068, 69sseldd 3588 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) ∈ ℝ)
7170recnd 10020 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) ∈ ℂ)
7266, 71addcomd 10190 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑋 + (𝑄𝑖)) = ((𝑄𝑖) + 𝑋))
735adantr 481 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑋 ∈ ℝ)
7452, 73resubcld 10410 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑉𝑖) − 𝑋) ∈ ℝ)
758fvmpt2 6253 . . . . . . . . . . . . . 14 ((𝑖 ∈ (0...𝑀) ∧ ((𝑉𝑖) − 𝑋) ∈ ℝ) → (𝑄𝑖) = ((𝑉𝑖) − 𝑋))
7650, 74, 75syl2anc 692 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) = ((𝑉𝑖) − 𝑋))
7776oveq1d 6625 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖) + 𝑋) = (((𝑉𝑖) − 𝑋) + 𝑋))
7852recnd 10020 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑉𝑖) ∈ ℂ)
7978, 66npcand 10348 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → (((𝑉𝑖) − 𝑋) + 𝑋) = (𝑉𝑖))
8072, 77, 793eqtrrd 2660 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑉𝑖) = (𝑋 + (𝑄𝑖)))
8180adantr 481 . . . . . . . . . 10 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑉𝑖) = (𝑋 + (𝑄𝑖)))
8270adantr 481 . . . . . . . . . . 11 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑄𝑖) ∈ ℝ)
8370rexrd 10041 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) ∈ ℝ*)
8483adantr 481 . . . . . . . . . . . 12 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑄𝑖) ∈ ℝ*)
8537, 68fssd 6019 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑄:(0...𝑀)⟶ℝ)
8685, 56ffvelrnd 6321 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈ ℝ)
8786rexrd 10041 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈ ℝ*)
8887adantr 481 . . . . . . . . . . . 12 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑄‘(𝑖 + 1)) ∈ ℝ*)
89 simpr 477 . . . . . . . . . . . 12 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
90 ioogtlb 39159 . . . . . . . . . . . 12 (((𝑄𝑖) ∈ ℝ* ∧ (𝑄‘(𝑖 + 1)) ∈ ℝ*𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑄𝑖) < 𝑠)
9184, 88, 89, 90syl3anc 1323 . . . . . . . . . . 11 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑄𝑖) < 𝑠)
9282, 63, 61, 91ltadd2dd 10148 . . . . . . . . . 10 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑋 + (𝑄𝑖)) < (𝑋 + 𝑠))
9381, 92eqbrtrd 4640 . . . . . . . . 9 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑉𝑖) < (𝑋 + 𝑠))
9486adantr 481 . . . . . . . . . . 11 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑄‘(𝑖 + 1)) ∈ ℝ)
95 iooltub 39177 . . . . . . . . . . . 12 (((𝑄𝑖) ∈ ℝ* ∧ (𝑄‘(𝑖 + 1)) ∈ ℝ*𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑠 < (𝑄‘(𝑖 + 1)))
9684, 88, 89, 95syl3anc 1323 . . . . . . . . . . 11 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑠 < (𝑄‘(𝑖 + 1)))
9763, 94, 61, 96ltadd2dd 10148 . . . . . . . . . 10 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑋 + 𝑠) < (𝑋 + (𝑄‘(𝑖 + 1))))
98 fveq2 6153 . . . . . . . . . . . . . . . . . 18 (𝑖 = 𝑗 → (𝑉𝑖) = (𝑉𝑗))
9998oveq1d 6625 . . . . . . . . . . . . . . . . 17 (𝑖 = 𝑗 → ((𝑉𝑖) − 𝑋) = ((𝑉𝑗) − 𝑋))
10099cbvmptv 4715 . . . . . . . . . . . . . . . 16 (𝑖 ∈ (0...𝑀) ↦ ((𝑉𝑖) − 𝑋)) = (𝑗 ∈ (0...𝑀) ↦ ((𝑉𝑗) − 𝑋))
1018, 100eqtri 2643 . . . . . . . . . . . . . . 15 𝑄 = (𝑗 ∈ (0...𝑀) ↦ ((𝑉𝑗) − 𝑋))
102101a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑄 = (𝑗 ∈ (0...𝑀) ↦ ((𝑉𝑗) − 𝑋)))
103 fveq2 6153 . . . . . . . . . . . . . . . 16 (𝑗 = (𝑖 + 1) → (𝑉𝑗) = (𝑉‘(𝑖 + 1)))
104103oveq1d 6625 . . . . . . . . . . . . . . 15 (𝑗 = (𝑖 + 1) → ((𝑉𝑗) − 𝑋) = ((𝑉‘(𝑖 + 1)) − 𝑋))
105104adantl 482 . . . . . . . . . . . . . 14 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑗 = (𝑖 + 1)) → ((𝑉𝑗) − 𝑋) = ((𝑉‘(𝑖 + 1)) − 𝑋))
10658, 73resubcld 10410 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑉‘(𝑖 + 1)) − 𝑋) ∈ ℝ)
107102, 105, 56, 106fvmptd 6250 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) = ((𝑉‘(𝑖 + 1)) − 𝑋))
108107oveq2d 6626 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑋 + (𝑄‘(𝑖 + 1))) = (𝑋 + ((𝑉‘(𝑖 + 1)) − 𝑋)))
10958recnd 10020 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑉‘(𝑖 + 1)) ∈ ℂ)
11066, 109pncan3d 10347 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑋 + ((𝑉‘(𝑖 + 1)) − 𝑋)) = (𝑉‘(𝑖 + 1)))
111108, 110eqtrd 2655 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑋 + (𝑄‘(𝑖 + 1))) = (𝑉‘(𝑖 + 1)))
112111adantr 481 . . . . . . . . . 10 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑋 + (𝑄‘(𝑖 + 1))) = (𝑉‘(𝑖 + 1)))
11397, 112breqtrd 4644 . . . . . . . . 9 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑋 + 𝑠) < (𝑉‘(𝑖 + 1)))
11454, 60, 64, 93, 113eliood 39162 . . . . . . . 8 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑋 + 𝑠) ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))))
115 fvres 6169 . . . . . . . 8 ((𝑋 + 𝑠) ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))) → ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))))‘(𝑋 + 𝑠)) = (𝐹‘(𝑋 + 𝑠)))
116114, 115syl 17 . . . . . . 7 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))))‘(𝑋 + 𝑠)) = (𝐹‘(𝑋 + 𝑠)))
117116eqcomd 2627 . . . . . 6 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝐹‘(𝑋 + 𝑠)) = ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))))‘(𝑋 + 𝑠)))
118117mpteq2dva 4709 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑠))) = (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))))‘(𝑋 + 𝑠))))
119 ioosscn 39158 . . . . . . 7 ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))) ⊆ ℂ
120119a1i 11 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))) ⊆ ℂ)
121 fourierdlem84.fcn . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℂ))
122 ioosscn 39158 . . . . . . 7 ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ℂ
123122a1i 11 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ℂ)
124120, 121, 123, 66, 114fourierdlem23 39680 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))))‘(𝑋 + 𝑠))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
125118, 124eqeltrd 2698 . . . 4 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑠))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
126 eqid 2621 . . . . 5 (𝑠 ∈ ℝ ↦ (𝐷𝑠)) = (𝑠 ∈ ℝ ↦ (𝐷𝑠))
127 ax-resscn 9945 . . . . . . . 8 ℝ ⊆ ℂ
128 ssid 3608 . . . . . . . 8 ℂ ⊆ ℂ
129 cncfss 22625 . . . . . . . 8 ((ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (ℝ–cn→ℝ) ⊆ (ℝ–cn→ℂ))
130127, 128, 129mp2an 707 . . . . . . 7 (ℝ–cn→ℝ) ⊆ (ℝ–cn→ℂ)
13122feqmptd 6211 . . . . . . . . 9 (𝜑𝐷 = (𝑠 ∈ ℝ ↦ (𝐷𝑠)))
132131eqcomd 2627 . . . . . . . 8 (𝜑 → (𝑠 ∈ ℝ ↦ (𝐷𝑠)) = 𝐷)
133132, 20eqeltrd 2698 . . . . . . 7 (𝜑 → (𝑠 ∈ ℝ ↦ (𝐷𝑠)) ∈ (ℝ–cn→ℝ))
134130, 133sseldi 3585 . . . . . 6 (𝜑 → (𝑠 ∈ ℝ ↦ (𝐷𝑠)) ∈ (ℝ–cn→ℂ))
135134adantr 481 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑠 ∈ ℝ ↦ (𝐷𝑠)) ∈ (ℝ–cn→ℂ))
13640, 68sstrd 3597 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ℝ)
137128a1i 11 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → ℂ ⊆ ℂ)
13822adantr 481 . . . . . . . 8 ((𝜑𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝐷:ℝ⟶ℝ)
13962adantl 482 . . . . . . . 8 ((𝜑𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑠 ∈ ℝ)
140138, 139ffvelrnd 6321 . . . . . . 7 ((𝜑𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝐷𝑠) ∈ ℝ)
141140recnd 10020 . . . . . 6 ((𝜑𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝐷𝑠) ∈ ℂ)
142141adantlr 750 . . . . 5 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝐷𝑠) ∈ ℂ)
143126, 135, 136, 137, 142cncfmptssg 39414 . . . 4 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐷𝑠)) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
144125, 143mulcncf 23138 . . 3 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐹‘(𝑋 + 𝑠)) · (𝐷𝑠))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
14542, 144eqeltrd 2698 . 2 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
146 eqid 2621 . . . 4 (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑠))) = (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑠)))
147 eqid 2621 . . . 4 (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐷𝑠)) = (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐷𝑠))
148 eqid 2621 . . . 4 (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐹‘(𝑋 + 𝑠)) · (𝐷𝑠))) = (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐹‘(𝑋 + 𝑠)) · (𝐷𝑠)))
14910adantr 481 . . . . . . 7 ((𝜑𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝐹:ℝ⟶ℝ)
1505adantr 481 . . . . . . . 8 ((𝜑𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑋 ∈ ℝ)
151150, 139readdcld 10021 . . . . . . 7 ((𝜑𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑋 + 𝑠) ∈ ℝ)
152149, 151ffvelrnd 6321 . . . . . 6 ((𝜑𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝐹‘(𝑋 + 𝑠)) ∈ ℝ)
153152recnd 10020 . . . . 5 ((𝜑𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝐹‘(𝑋 + 𝑠)) ∈ ℂ)
154153adantlr 750 . . . 4 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝐹‘(𝑋 + 𝑠)) ∈ ℂ)
15510adantr 481 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐹:ℝ⟶ℝ)
156 ioossre 12185 . . . . . 6 ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))) ⊆ ℝ
157156a1i 11 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))) ⊆ ℝ)
15882, 91gtned 10124 . . . . 5 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑠 ≠ (𝑄𝑖))
159 fourierdlem84.r . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑉𝑖)))
16080oveq2d 6626 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑉𝑖)) = ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑋 + (𝑄𝑖))))
161159, 160eleqtrd 2700 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑋 + (𝑄𝑖))))
162155, 73, 136, 146, 114, 157, 158, 161, 71fourierdlem53 39709 . . . 4 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑠))) lim (𝑄𝑖)))
163 limcresi 23572 . . . . . 6 ((𝑠 ∈ ℝ ↦ (𝐷𝑠)) lim (𝑄𝑖)) ⊆ (((𝑠 ∈ ℝ ↦ (𝐷𝑠)) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖))
164130, 20sseldi 3585 . . . . . . . . 9 (𝜑𝐷 ∈ (ℝ–cn→ℂ))
165164adantr 481 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐷 ∈ (ℝ–cn→ℂ))
166165, 70cnlimci 23576 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐷‘(𝑄𝑖)) ∈ (𝐷 lim (𝑄𝑖)))
167131oveq1d 6625 . . . . . . . 8 (𝜑 → (𝐷 lim (𝑄𝑖)) = ((𝑠 ∈ ℝ ↦ (𝐷𝑠)) lim (𝑄𝑖)))
168167adantr 481 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐷 lim (𝑄𝑖)) = ((𝑠 ∈ ℝ ↦ (𝐷𝑠)) lim (𝑄𝑖)))
169166, 168eleqtrd 2700 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐷‘(𝑄𝑖)) ∈ ((𝑠 ∈ ℝ ↦ (𝐷𝑠)) lim (𝑄𝑖)))
170163, 169sseldi 3585 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐷‘(𝑄𝑖)) ∈ (((𝑠 ∈ ℝ ↦ (𝐷𝑠)) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
171136resmptd 5416 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑠 ∈ ℝ ↦ (𝐷𝑠)) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐷𝑠)))
172171oveq1d 6625 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → (((𝑠 ∈ ℝ ↦ (𝐷𝑠)) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)) = ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐷𝑠)) lim (𝑄𝑖)))
173170, 172eleqtrd 2700 . . . 4 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐷‘(𝑄𝑖)) ∈ ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐷𝑠)) lim (𝑄𝑖)))
174146, 147, 148, 154, 142, 162, 173mullimc 39280 . . 3 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑅 · (𝐷‘(𝑄𝑖))) ∈ ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐹‘(𝑋 + 𝑠)) · (𝐷𝑠))) lim (𝑄𝑖)))
17527reseq1i 5357 . . . . 5 (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((𝑠 ∈ (𝐴[,]𝐵) ↦ ((𝐹‘(𝑋 + 𝑠)) · (𝐷𝑠))) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
176175, 41syl5req 2668 . . . 4 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐹‘(𝑋 + 𝑠)) · (𝐷𝑠))) = (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))
177176oveq1d 6625 . . 3 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐹‘(𝑋 + 𝑠)) · (𝐷𝑠))) lim (𝑄𝑖)) = ((𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
178174, 177eleqtrd 2700 . 2 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑅 · (𝐷‘(𝑄𝑖))) ∈ ((𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
17963, 96ltned 10125 . . . . 5 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑠 ≠ (𝑄‘(𝑖 + 1)))
180 fourierdlem84.l . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑉‘(𝑖 + 1))))
181111eqcomd 2627 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑉‘(𝑖 + 1)) = (𝑋 + (𝑄‘(𝑖 + 1))))
182181oveq2d 6626 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑉‘(𝑖 + 1))) = ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑋 + (𝑄‘(𝑖 + 1)))))
183180, 182eleqtrd 2700 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑋 + (𝑄‘(𝑖 + 1)))))
18486recnd 10020 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈ ℂ)
185155, 73, 136, 146, 114, 157, 179, 183, 184fourierdlem53 39709 . . . 4 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑠))) lim (𝑄‘(𝑖 + 1))))
186 limcresi 23572 . . . . . 6 ((𝑠 ∈ ℝ ↦ (𝐷𝑠)) lim (𝑄‘(𝑖 + 1))) ⊆ (((𝑠 ∈ ℝ ↦ (𝐷𝑠)) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1)))
187165, 86cnlimci 23576 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐷‘(𝑄‘(𝑖 + 1))) ∈ (𝐷 lim (𝑄‘(𝑖 + 1))))
188131oveq1d 6625 . . . . . . . 8 (𝜑 → (𝐷 lim (𝑄‘(𝑖 + 1))) = ((𝑠 ∈ ℝ ↦ (𝐷𝑠)) lim (𝑄‘(𝑖 + 1))))
189188adantr 481 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐷 lim (𝑄‘(𝑖 + 1))) = ((𝑠 ∈ ℝ ↦ (𝐷𝑠)) lim (𝑄‘(𝑖 + 1))))
190187, 189eleqtrd 2700 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐷‘(𝑄‘(𝑖 + 1))) ∈ ((𝑠 ∈ ℝ ↦ (𝐷𝑠)) lim (𝑄‘(𝑖 + 1))))
191186, 190sseldi 3585 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐷‘(𝑄‘(𝑖 + 1))) ∈ (((𝑠 ∈ ℝ ↦ (𝐷𝑠)) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
192171oveq1d 6625 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → (((𝑠 ∈ ℝ ↦ (𝐷𝑠)) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))) = ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐷𝑠)) lim (𝑄‘(𝑖 + 1))))
193191, 192eleqtrd 2700 . . . 4 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐷‘(𝑄‘(𝑖 + 1))) ∈ ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐷𝑠)) lim (𝑄‘(𝑖 + 1))))
194146, 147, 148, 154, 142, 185, 193mullimc 39280 . . 3 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐿 · (𝐷‘(𝑄‘(𝑖 + 1)))) ∈ ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐹‘(𝑋 + 𝑠)) · (𝐷𝑠))) lim (𝑄‘(𝑖 + 1))))
195176oveq1d 6625 . . 3 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐹‘(𝑋 + 𝑠)) · (𝐷𝑠))) lim (𝑄‘(𝑖 + 1))) = ((𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
196194, 195eleqtrd 2700 . 2 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐿 · (𝐷‘(𝑄‘(𝑖 + 1)))) ∈ ((𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
1971, 2, 9, 28, 145, 178, 196fourierdlem69 39725 1 (𝜑𝐺 ∈ 𝐿1)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 384   = wceq 1480   ∈ wcel 1987  ∀wral 2907  {crab 2911   ⊆ wss 3559   class class class wbr 4618   ↦ cmpt 4678   ↾ cres 5081  ⟶wf 5848  ‘cfv 5852  (class class class)co 6610   ↑𝑚 cmap 7809  ℂcc 9886  ℝcr 9887  0cc0 9888  1c1 9889   + caddc 9891   · cmul 9893  ℝ*cxr 10025   < clt 10026   − cmin 10218  ℕcn 10972  (,)cioo 12125  [,]cicc 12128  ...cfz 12276  ..^cfzo 12414  –cn→ccncf 22602  𝐿1cibl 23309   limℂ climc 23549 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-inf2 8490  ax-cc 9209  ax-cnex 9944  ax-resscn 9945  ax-1cn 9946  ax-icn 9947  ax-addcl 9948  ax-addrcl 9949  ax-mulcl 9950  ax-mulrcl 9951  ax-mulcom 9952  ax-addass 9953  ax-mulass 9954  ax-distr 9955  ax-i2m1 9956  ax-1ne0 9957  ax-1rid 9958  ax-rnegex 9959  ax-rrecex 9960  ax-cnre 9961  ax-pre-lttri 9962  ax-pre-lttrn 9963  ax-pre-ltadd 9964  ax-pre-mulgt0 9965  ax-pre-sup 9966  ax-addf 9967  ax-mulf 9968 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-iin 4493  df-disj 4589  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-se 5039  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-isom 5861  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-of 6857  df-ofr 6858  df-om 7020  df-1st 7120  df-2nd 7121  df-supp 7248  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-1o 7512  df-2o 7513  df-oadd 7516  df-omul 7517  df-er 7694  df-map 7811  df-pm 7812  df-ixp 7861  df-en 7908  df-dom 7909  df-sdom 7910  df-fin 7911  df-fsupp 8228  df-fi 8269  df-sup 8300  df-inf 8301  df-oi 8367  df-card 8717  df-acn 8720  df-cda 8942  df-pnf 10028  df-mnf 10029  df-xr 10030  df-ltxr 10031  df-le 10032  df-sub 10220  df-neg 10221  df-div 10637  df-nn 10973  df-2 11031  df-3 11032  df-4 11033  df-5 11034  df-6 11035  df-7 11036  df-8 11037  df-9 11038  df-n0 11245  df-z 11330  df-dec 11446  df-uz 11640  df-q 11741  df-rp 11785  df-xneg 11898  df-xadd 11899  df-xmul 11900  df-ioo 12129  df-ioc 12130  df-ico 12131  df-icc 12132  df-fz 12277  df-fzo 12415  df-fl 12541  df-mod 12617  df-seq 12750  df-exp 12809  df-hash 13066  df-cj 13781  df-re 13782  df-im 13783  df-sqrt 13917  df-abs 13918  df-limsup 14144  df-clim 14161  df-rlim 14162  df-sum 14359  df-struct 15794  df-ndx 15795  df-slot 15796  df-base 15797  df-sets 15798  df-ress 15799  df-plusg 15886  df-mulr 15887  df-starv 15888  df-sca 15889  df-vsca 15890  df-ip 15891  df-tset 15892  df-ple 15893  df-ds 15896  df-unif 15897  df-hom 15898  df-cco 15899  df-rest 16015  df-topn 16016  df-0g 16034  df-gsum 16035  df-topgen 16036  df-pt 16037  df-prds 16040  df-xrs 16094  df-qtop 16099  df-imas 16100  df-xps 16102  df-mre 16178  df-mrc 16179  df-acs 16181  df-mgm 17174  df-sgrp 17216  df-mnd 17227  df-submnd 17268  df-mulg 17473  df-cntz 17682  df-cmn 18127  df-psmet 19670  df-xmet 19671  df-met 19672  df-bl 19673  df-mopn 19674  df-cnfld 19679  df-top 20631  df-topon 20648  df-topsp 20661  df-bases 20674  df-cld 20746  df-ntr 20747  df-cls 20748  df-cn 20954  df-cnp 20955  df-cmp 21113  df-tx 21288  df-hmeo 21481  df-xms 22048  df-ms 22049  df-tms 22050  df-cncf 22604  df-ovol 23156  df-vol 23157  df-mbf 23311  df-itg1 23312  df-itg2 23313  df-ibl 23314  df-itg 23315  df-0p 23360  df-limc 23553 This theorem is referenced by:  fourierdlem103  39759  fourierdlem104  39760  fourierdlem112  39768
 Copyright terms: Public domain W3C validator