Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem97 Structured version   Visualization version   GIF version

Theorem fourierdlem97 39757
Description: 𝐹 is continuous on the intervals induced by the moved partition 𝑉. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem97.f (𝜑𝐹:ℝ⟶ℝ)
fourierdlem97.g 𝐺 = (ℝ D 𝐹)
fourierdlem97.p 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
fourierdlem97.a (𝜑𝐵 ∈ ℝ)
fourierdlem97.b (𝜑𝐴 ∈ ℝ)
fourierdlem97.t 𝑇 = (𝐵𝐴)
fourierdlem97.m (𝜑𝑀 ∈ ℕ)
fourierdlem97.q (𝜑𝑄 ∈ (𝑃𝑀))
fourierdlem97.fper ((𝜑𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
fourierdlem97.qcn ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
fourierdlem97.c (𝜑𝐶 ∈ ℝ)
fourierdlem97.d (𝜑𝐷 ∈ (𝐶(,)+∞))
fourierdlem97.j (𝜑𝐽 ∈ (0..^((#‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)))
fourierdlem97.v 𝑉 = (℩𝑔𝑔 Isom < , < ((0...((#‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃ ∈ ℤ (𝑦 + ( · 𝑇)) ∈ ran 𝑄})))
fourierdlem97.h 𝐻 = (𝑠 ∈ ℝ ↦ if(𝑠 ∈ dom 𝐺, (𝐺𝑠), 0))
Assertion
Ref Expression
fourierdlem97 (𝜑 → (𝐺 ↾ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1)))) ∈ (((𝑉𝐽)(,)(𝑉‘(𝐽 + 1)))–cn→ℂ))
Distinct variable groups:   𝐴,𝑖,𝑥   𝐴,𝑚,𝑝,𝑖   𝐵,𝑖,𝑥   𝐵,𝑚,𝑝   𝑦,𝐶,𝑔   𝐶,𝑖,𝑥,𝑦   𝐶,𝑚,𝑝,𝑦   𝑦,𝐷,𝑔   𝐷,𝑖,𝑥   𝐷,𝑚,𝑝   𝐹,𝑠,𝑥   𝑦,𝐹   𝑖,𝐺,𝑠   𝑦,𝐺   𝑖,𝐻,𝑠,𝑥   ,𝐽,𝑘,𝑖,𝑥   𝐽,𝑠   ,𝑀,𝑖,𝑥   𝑚,𝑀,𝑝   𝑀,𝑠   𝑄,,𝑘,𝑔,𝑦   𝑄,𝑖,𝑥   𝑄,𝑚,𝑝,𝑘   𝑄,𝑠   𝑇,,𝑘,𝑔,𝑦   𝑇,𝑖,𝑥   𝑇,𝑚,𝑝   𝑇,𝑠   ,𝑉,𝑘,𝑔   𝑖,𝑉,𝑥   𝑉,𝑝   𝑉,𝑠   𝜑,,𝑦,𝑔   𝜑,𝑖,𝑠,𝑥
Allowed substitution hints:   𝜑(𝑘,𝑚,𝑝)   𝐴(𝑦,𝑔,,𝑘,𝑠)   𝐵(𝑦,𝑔,,𝑘,𝑠)   𝐶(,𝑘,𝑠)   𝐷(,𝑘,𝑠)   𝑃(𝑥,𝑦,𝑔,,𝑖,𝑘,𝑚,𝑠,𝑝)   𝐹(𝑔,,𝑖,𝑘,𝑚,𝑝)   𝐺(𝑥,𝑔,,𝑘,𝑚,𝑝)   𝐻(𝑦,𝑔,,𝑘,𝑚,𝑝)   𝐽(𝑦,𝑔,𝑚,𝑝)   𝑀(𝑦,𝑔,𝑘)   𝑉(𝑦,𝑚)

Proof of Theorem fourierdlem97
Dummy variables 𝑓 𝑙 𝑡 𝑢 𝑤 𝑧 𝑣 𝑒 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ioossre 12193 . . . . . . . 8 ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1))) ⊆ ℝ
21a1i 11 . . . . . . 7 (𝜑 → ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1))) ⊆ ℝ)
32sselda 3588 . . . . . 6 ((𝜑𝑠 ∈ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1)))) → 𝑠 ∈ ℝ)
4 iftrue 4070 . . . . . . . . . . 11 (𝑠 ∈ dom 𝐺 → if(𝑠 ∈ dom 𝐺, (𝐺𝑠), 0) = (𝐺𝑠))
54adantl 482 . . . . . . . . . 10 ((𝜑𝑠 ∈ dom 𝐺) → if(𝑠 ∈ dom 𝐺, (𝐺𝑠), 0) = (𝐺𝑠))
6 fourierdlem97.f . . . . . . . . . . . . . 14 (𝜑𝐹:ℝ⟶ℝ)
7 ssid 3609 . . . . . . . . . . . . . 14 ℝ ⊆ ℝ
8 dvfre 23654 . . . . . . . . . . . . . 14 ((𝐹:ℝ⟶ℝ ∧ ℝ ⊆ ℝ) → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ)
96, 7, 8sylancl 693 . . . . . . . . . . . . 13 (𝜑 → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ)
10 fourierdlem97.g . . . . . . . . . . . . . 14 𝐺 = (ℝ D 𝐹)
1110feq1i 6003 . . . . . . . . . . . . 13 (𝐺:dom (ℝ D 𝐹)⟶ℝ ↔ (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ)
129, 11sylibr 224 . . . . . . . . . . . 12 (𝜑𝐺:dom (ℝ D 𝐹)⟶ℝ)
1312adantr 481 . . . . . . . . . . 11 ((𝜑𝑠 ∈ dom 𝐺) → 𝐺:dom (ℝ D 𝐹)⟶ℝ)
14 id 22 . . . . . . . . . . . . 13 (𝑠 ∈ dom 𝐺𝑠 ∈ dom 𝐺)
1510dmeqi 5295 . . . . . . . . . . . . 13 dom 𝐺 = dom (ℝ D 𝐹)
1614, 15syl6eleq 2708 . . . . . . . . . . . 12 (𝑠 ∈ dom 𝐺𝑠 ∈ dom (ℝ D 𝐹))
1716adantl 482 . . . . . . . . . . 11 ((𝜑𝑠 ∈ dom 𝐺) → 𝑠 ∈ dom (ℝ D 𝐹))
1813, 17ffvelrnd 6326 . . . . . . . . . 10 ((𝜑𝑠 ∈ dom 𝐺) → (𝐺𝑠) ∈ ℝ)
195, 18eqeltrd 2698 . . . . . . . . 9 ((𝜑𝑠 ∈ dom 𝐺) → if(𝑠 ∈ dom 𝐺, (𝐺𝑠), 0) ∈ ℝ)
2019adantlr 750 . . . . . . . 8 (((𝜑𝑠 ∈ ℝ) ∧ 𝑠 ∈ dom 𝐺) → if(𝑠 ∈ dom 𝐺, (𝐺𝑠), 0) ∈ ℝ)
21 iffalse 4073 . . . . . . . . . 10 𝑠 ∈ dom 𝐺 → if(𝑠 ∈ dom 𝐺, (𝐺𝑠), 0) = 0)
22 0red 10001 . . . . . . . . . 10 𝑠 ∈ dom 𝐺 → 0 ∈ ℝ)
2321, 22eqeltrd 2698 . . . . . . . . 9 𝑠 ∈ dom 𝐺 → if(𝑠 ∈ dom 𝐺, (𝐺𝑠), 0) ∈ ℝ)
2423adantl 482 . . . . . . . 8 (((𝜑𝑠 ∈ ℝ) ∧ ¬ 𝑠 ∈ dom 𝐺) → if(𝑠 ∈ dom 𝐺, (𝐺𝑠), 0) ∈ ℝ)
2520, 24pm2.61dan 831 . . . . . . 7 ((𝜑𝑠 ∈ ℝ) → if(𝑠 ∈ dom 𝐺, (𝐺𝑠), 0) ∈ ℝ)
263, 25syldan 487 . . . . . 6 ((𝜑𝑠 ∈ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1)))) → if(𝑠 ∈ dom 𝐺, (𝐺𝑠), 0) ∈ ℝ)
27 fourierdlem97.h . . . . . . 7 𝐻 = (𝑠 ∈ ℝ ↦ if(𝑠 ∈ dom 𝐺, (𝐺𝑠), 0))
2827fvmpt2 6258 . . . . . 6 ((𝑠 ∈ ℝ ∧ if(𝑠 ∈ dom 𝐺, (𝐺𝑠), 0) ∈ ℝ) → (𝐻𝑠) = if(𝑠 ∈ dom 𝐺, (𝐺𝑠), 0))
293, 26, 28syl2anc 692 . . . . 5 ((𝜑𝑠 ∈ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1)))) → (𝐻𝑠) = if(𝑠 ∈ dom 𝐺, (𝐺𝑠), 0))
30 fourierdlem97.t . . . . . . . . . 10 𝑇 = (𝐵𝐴)
31 fourierdlem97.p . . . . . . . . . 10 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
32 fourierdlem97.m . . . . . . . . . 10 (𝜑𝑀 ∈ ℕ)
33 fourierdlem97.q . . . . . . . . . 10 (𝜑𝑄 ∈ (𝑃𝑀))
34 fourierdlem97.c . . . . . . . . . 10 (𝜑𝐶 ∈ ℝ)
35 fourierdlem97.d . . . . . . . . . . 11 (𝜑𝐷 ∈ (𝐶(,)+∞))
36 elioore 12163 . . . . . . . . . . 11 (𝐷 ∈ (𝐶(,)+∞) → 𝐷 ∈ ℝ)
3735, 36syl 17 . . . . . . . . . 10 (𝜑𝐷 ∈ ℝ)
3834rexrd 10049 . . . . . . . . . . 11 (𝜑𝐶 ∈ ℝ*)
39 pnfxr 10052 . . . . . . . . . . . 12 +∞ ∈ ℝ*
4039a1i 11 . . . . . . . . . . 11 (𝜑 → +∞ ∈ ℝ*)
41 ioogtlb 39163 . . . . . . . . . . 11 ((𝐶 ∈ ℝ* ∧ +∞ ∈ ℝ*𝐷 ∈ (𝐶(,)+∞)) → 𝐶 < 𝐷)
4238, 40, 35, 41syl3anc 1323 . . . . . . . . . 10 (𝜑𝐶 < 𝐷)
43 oveq1 6622 . . . . . . . . . . . . . 14 (𝑦 = 𝑥 → (𝑦 + ( · 𝑇)) = (𝑥 + ( · 𝑇)))
4443eleq1d 2683 . . . . . . . . . . . . 13 (𝑦 = 𝑥 → ((𝑦 + ( · 𝑇)) ∈ ran 𝑄 ↔ (𝑥 + ( · 𝑇)) ∈ ran 𝑄))
4544rexbidv 3047 . . . . . . . . . . . 12 (𝑦 = 𝑥 → (∃ ∈ ℤ (𝑦 + ( · 𝑇)) ∈ ran 𝑄 ↔ ∃ ∈ ℤ (𝑥 + ( · 𝑇)) ∈ ran 𝑄))
4645cbvrabv 3189 . . . . . . . . . . 11 {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃ ∈ ℤ (𝑦 + ( · 𝑇)) ∈ ran 𝑄} = {𝑥 ∈ (𝐶[,]𝐷) ∣ ∃ ∈ ℤ (𝑥 + ( · 𝑇)) ∈ ran 𝑄}
4746uneq2i 3748 . . . . . . . . . 10 ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃ ∈ ℤ (𝑦 + ( · 𝑇)) ∈ ran 𝑄}) = ({𝐶, 𝐷} ∪ {𝑥 ∈ (𝐶[,]𝐷) ∣ ∃ ∈ ℤ (𝑥 + ( · 𝑇)) ∈ ran 𝑄})
48 oveq1 6622 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑙 → (𝑘 · 𝑇) = (𝑙 · 𝑇))
4948oveq2d 6631 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑙 → (𝑦 + (𝑘 · 𝑇)) = (𝑦 + (𝑙 · 𝑇)))
5049eleq1d 2683 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑙 → ((𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄 ↔ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄))
5150cbvrexv 3164 . . . . . . . . . . . . . . . 16 (∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄 ↔ ∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄)
5251a1i 11 . . . . . . . . . . . . . . 15 (𝑦 ∈ (𝐶[,]𝐷) → (∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄 ↔ ∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄))
5352rabbiia 3177 . . . . . . . . . . . . . 14 {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄} = {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄}
5453uneq2i 3748 . . . . . . . . . . . . 13 ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}) = ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄})
55 oveq1 6622 . . . . . . . . . . . . . . . . . . 19 (𝑙 = → (𝑙 · 𝑇) = ( · 𝑇))
5655oveq2d 6631 . . . . . . . . . . . . . . . . . 18 (𝑙 = → (𝑦 + (𝑙 · 𝑇)) = (𝑦 + ( · 𝑇)))
5756eleq1d 2683 . . . . . . . . . . . . . . . . 17 (𝑙 = → ((𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄 ↔ (𝑦 + ( · 𝑇)) ∈ ran 𝑄))
5857cbvrexv 3164 . . . . . . . . . . . . . . . 16 (∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄 ↔ ∃ ∈ ℤ (𝑦 + ( · 𝑇)) ∈ ran 𝑄)
5958a1i 11 . . . . . . . . . . . . . . 15 (𝑦 ∈ (𝐶[,]𝐷) → (∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄 ↔ ∃ ∈ ℤ (𝑦 + ( · 𝑇)) ∈ ran 𝑄))
6059rabbiia 3177 . . . . . . . . . . . . . 14 {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄} = {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃ ∈ ℤ (𝑦 + ( · 𝑇)) ∈ ran 𝑄}
6160uneq2i 3748 . . . . . . . . . . . . 13 ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄}) = ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃ ∈ ℤ (𝑦 + ( · 𝑇)) ∈ ran 𝑄})
6254, 61eqtri 2643 . . . . . . . . . . . 12 ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}) = ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃ ∈ ℤ (𝑦 + ( · 𝑇)) ∈ ran 𝑄})
6362fveq2i 6161 . . . . . . . . . . 11 (#‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) = (#‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃ ∈ ℤ (𝑦 + ( · 𝑇)) ∈ ran 𝑄}))
6463oveq1i 6625 . . . . . . . . . 10 ((#‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1) = ((#‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃ ∈ ℤ (𝑦 + ( · 𝑇)) ∈ ran 𝑄})) − 1)
65 fourierdlem97.v . . . . . . . . . 10 𝑉 = (℩𝑔𝑔 Isom < , < ((0...((#‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃ ∈ ℤ (𝑦 + ( · 𝑇)) ∈ ran 𝑄})))
66 fourierdlem97.j . . . . . . . . . 10 (𝜑𝐽 ∈ (0..^((#‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)))
67 oveq1 6622 . . . . . . . . . . . . . 14 (𝑘 = → (𝑘 · 𝑇) = ( · 𝑇))
6867oveq2d 6631 . . . . . . . . . . . . 13 (𝑘 = → ((𝑄‘0) + (𝑘 · 𝑇)) = ((𝑄‘0) + ( · 𝑇)))
6968breq1d 4633 . . . . . . . . . . . 12 (𝑘 = → (((𝑄‘0) + (𝑘 · 𝑇)) ≤ (𝑉𝐽) ↔ ((𝑄‘0) + ( · 𝑇)) ≤ (𝑉𝐽)))
7069cbvrabv 3189 . . . . . . . . . . 11 {𝑘 ∈ ℤ ∣ ((𝑄‘0) + (𝑘 · 𝑇)) ≤ (𝑉𝐽)} = { ∈ ℤ ∣ ((𝑄‘0) + ( · 𝑇)) ≤ (𝑉𝐽)}
7170supeq1i 8313 . . . . . . . . . 10 sup({𝑘 ∈ ℤ ∣ ((𝑄‘0) + (𝑘 · 𝑇)) ≤ (𝑉𝐽)}, ℝ, < ) = sup({ ∈ ℤ ∣ ((𝑄‘0) + ( · 𝑇)) ≤ (𝑉𝐽)}, ℝ, < )
72 fveq2 6158 . . . . . . . . . . . . . 14 (𝑗 = 𝑒 → (𝑄𝑗) = (𝑄𝑒))
7372oveq1d 6630 . . . . . . . . . . . . 13 (𝑗 = 𝑒 → ((𝑄𝑗) + (sup({𝑘 ∈ ℤ ∣ ((𝑄‘0) + (𝑘 · 𝑇)) ≤ (𝑉𝐽)}, ℝ, < ) · 𝑇)) = ((𝑄𝑒) + (sup({𝑘 ∈ ℤ ∣ ((𝑄‘0) + (𝑘 · 𝑇)) ≤ (𝑉𝐽)}, ℝ, < ) · 𝑇)))
7473breq1d 4633 . . . . . . . . . . . 12 (𝑗 = 𝑒 → (((𝑄𝑗) + (sup({𝑘 ∈ ℤ ∣ ((𝑄‘0) + (𝑘 · 𝑇)) ≤ (𝑉𝐽)}, ℝ, < ) · 𝑇)) ≤ (𝑉𝐽) ↔ ((𝑄𝑒) + (sup({𝑘 ∈ ℤ ∣ ((𝑄‘0) + (𝑘 · 𝑇)) ≤ (𝑉𝐽)}, ℝ, < ) · 𝑇)) ≤ (𝑉𝐽)))
7574cbvrabv 3189 . . . . . . . . . . 11 {𝑗 ∈ (0..^𝑀) ∣ ((𝑄𝑗) + (sup({𝑘 ∈ ℤ ∣ ((𝑄‘0) + (𝑘 · 𝑇)) ≤ (𝑉𝐽)}, ℝ, < ) · 𝑇)) ≤ (𝑉𝐽)} = {𝑒 ∈ (0..^𝑀) ∣ ((𝑄𝑒) + (sup({𝑘 ∈ ℤ ∣ ((𝑄‘0) + (𝑘 · 𝑇)) ≤ (𝑉𝐽)}, ℝ, < ) · 𝑇)) ≤ (𝑉𝐽)}
7675supeq1i 8313 . . . . . . . . . 10 sup({𝑗 ∈ (0..^𝑀) ∣ ((𝑄𝑗) + (sup({𝑘 ∈ ℤ ∣ ((𝑄‘0) + (𝑘 · 𝑇)) ≤ (𝑉𝐽)}, ℝ, < ) · 𝑇)) ≤ (𝑉𝐽)}, ℝ, < ) = sup({𝑒 ∈ (0..^𝑀) ∣ ((𝑄𝑒) + (sup({𝑘 ∈ ℤ ∣ ((𝑄‘0) + (𝑘 · 𝑇)) ≤ (𝑉𝐽)}, ℝ, < ) · 𝑇)) ≤ (𝑉𝐽)}, ℝ, < )
7730, 31, 32, 33, 34, 37, 42, 47, 64, 65, 66, 71, 76fourierdlem64 39724 . . . . . . . . 9 (𝜑 → ((sup({𝑗 ∈ (0..^𝑀) ∣ ((𝑄𝑗) + (sup({𝑘 ∈ ℤ ∣ ((𝑄‘0) + (𝑘 · 𝑇)) ≤ (𝑉𝐽)}, ℝ, < ) · 𝑇)) ≤ (𝑉𝐽)}, ℝ, < ) ∈ (0..^𝑀) ∧ sup({𝑘 ∈ ℤ ∣ ((𝑄‘0) + (𝑘 · 𝑇)) ≤ (𝑉𝐽)}, ℝ, < ) ∈ ℤ) ∧ ∃𝑖 ∈ (0..^𝑀)∃𝑙 ∈ ℤ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1))) ⊆ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))))
7877simprd 479 . . . . . . . 8 (𝜑 → ∃𝑖 ∈ (0..^𝑀)∃𝑙 ∈ ℤ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1))) ⊆ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇))))
79 simpl1 1062 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ) ∧ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1))) ⊆ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))) ∧ 𝑡 ∈ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1)))) → 𝜑)
80 simpl2l 1112 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ) ∧ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1))) ⊆ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))) ∧ 𝑡 ∈ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1)))) → 𝑖 ∈ (0..^𝑀))
81 fourierdlem97.qcn . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
82 cncff 22636 . . . . . . . . . . . . . . . . . . . . 21 ((𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ) → (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))):((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))⟶ℂ)
8381, 82syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))):((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))⟶ℂ)
84 ffun 6015 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐺:dom (ℝ D 𝐹)⟶ℝ → Fun 𝐺)
8512, 84syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → Fun 𝐺)
8685adantr 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑖 ∈ (0..^𝑀)) → Fun 𝐺)
87 ffvresb 6360 . . . . . . . . . . . . . . . . . . . . 21 (Fun 𝐺 → ((𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))):((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))⟶ℂ ↔ ∀𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(𝑠 ∈ dom 𝐺 ∧ (𝐺𝑠) ∈ ℂ)))
8886, 87syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))):((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))⟶ℂ ↔ ∀𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(𝑠 ∈ dom 𝐺 ∧ (𝐺𝑠) ∈ ℂ)))
8983, 88mpbid 222 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (0..^𝑀)) → ∀𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(𝑠 ∈ dom 𝐺 ∧ (𝐺𝑠) ∈ ℂ))
9089r19.21bi 2928 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑠 ∈ dom 𝐺 ∧ (𝐺𝑠) ∈ ℂ))
9190simpld 475 . . . . . . . . . . . . . . . . 17 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑠 ∈ dom 𝐺)
9291ralrimiva 2962 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑀)) → ∀𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))𝑠 ∈ dom 𝐺)
93 dfss3 3578 . . . . . . . . . . . . . . . 16 (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ dom 𝐺 ↔ ∀𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))𝑠 ∈ dom 𝐺)
9492, 93sylibr 224 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ dom 𝐺)
9579, 80, 94syl2anc 692 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ) ∧ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1))) ⊆ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))) ∧ 𝑡 ∈ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1)))) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ dom 𝐺)
96 simpl2 1063 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ) ∧ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1))) ⊆ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))) ∧ 𝑡 ∈ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1)))) → (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ))
9779, 96jca 554 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ) ∧ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1))) ⊆ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))) ∧ 𝑡 ∈ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1)))) → (𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ)))
98 simpl3 1064 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ) ∧ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1))) ⊆ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))) ∧ 𝑡 ∈ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1)))) → ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1))) ⊆ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇))))
99 simpr 477 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ) ∧ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1))) ⊆ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))) ∧ 𝑡 ∈ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1)))) → 𝑡 ∈ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1))))
10098, 99sseldd 3589 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ) ∧ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1))) ⊆ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))) ∧ 𝑡 ∈ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1)))) → 𝑡 ∈ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇))))
10131fourierdlem2 39663 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑀 ∈ ℕ → (𝑄 ∈ (𝑃𝑀) ↔ (𝑄 ∈ (ℝ ↑𝑚 (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
10232, 101syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (𝑄 ∈ (𝑃𝑀) ↔ (𝑄 ∈ (ℝ ↑𝑚 (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
10333, 102mpbid 222 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (𝑄 ∈ (ℝ ↑𝑚 (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1)))))
104103simpld 475 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝑄 ∈ (ℝ ↑𝑚 (0...𝑀)))
105 elmapi 7839 . . . . . . . . . . . . . . . . . . . . . 22 (𝑄 ∈ (ℝ ↑𝑚 (0...𝑀)) → 𝑄:(0...𝑀)⟶ℝ)
106104, 105syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑄:(0...𝑀)⟶ℝ)
107106adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑄:(0...𝑀)⟶ℝ)
108 elfzofz 12442 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 ∈ (0..^𝑀) → 𝑖 ∈ (0...𝑀))
109108adantl 482 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑖 ∈ (0...𝑀))
110107, 109ffvelrnd 6326 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) ∈ ℝ)
111110rexrd 10049 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) ∈ ℝ*)
112111adantrr 752 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ)) → (𝑄𝑖) ∈ ℝ*)
113112adantr 481 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ)) ∧ 𝑡 ∈ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))) → (𝑄𝑖) ∈ ℝ*)
114 fzofzp1 12522 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 ∈ (0..^𝑀) → (𝑖 + 1) ∈ (0...𝑀))
115114adantl 482 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑖 + 1) ∈ (0...𝑀))
116107, 115ffvelrnd 6326 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈ ℝ)
117116adantrr 752 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ)) → (𝑄‘(𝑖 + 1)) ∈ ℝ)
118117adantr 481 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ)) ∧ 𝑡 ∈ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))) → (𝑄‘(𝑖 + 1)) ∈ ℝ)
119118rexrd 10049 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ)) ∧ 𝑡 ∈ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))) → (𝑄‘(𝑖 + 1)) ∈ ℝ*)
120 elioore 12163 . . . . . . . . . . . . . . . . . 18 (𝑡 ∈ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇))) → 𝑡 ∈ ℝ)
121120adantl 482 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ)) ∧ 𝑡 ∈ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))) → 𝑡 ∈ ℝ)
122 zre 11341 . . . . . . . . . . . . . . . . . . . 20 (𝑙 ∈ ℤ → 𝑙 ∈ ℝ)
123122adantl 482 . . . . . . . . . . . . . . . . . . 19 ((𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ) → 𝑙 ∈ ℝ)
124123ad2antlr 762 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ)) ∧ 𝑡 ∈ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))) → 𝑙 ∈ ℝ)
125 fourierdlem97.a . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐵 ∈ ℝ)
126 fourierdlem97.b . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐴 ∈ ℝ)
127125, 126resubcld 10418 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐵𝐴) ∈ ℝ)
12830, 127syl5eqel 2702 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑇 ∈ ℝ)
129128ad2antrr 761 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ)) ∧ 𝑡 ∈ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))) → 𝑇 ∈ ℝ)
130124, 129remulcld 10030 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ)) ∧ 𝑡 ∈ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))) → (𝑙 · 𝑇) ∈ ℝ)
131121, 130resubcld 10418 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ)) ∧ 𝑡 ∈ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))) → (𝑡 − (𝑙 · 𝑇)) ∈ ℝ)
132110adantrr 752 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ)) → (𝑄𝑖) ∈ ℝ)
133122ad2antll 764 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ)) → 𝑙 ∈ ℝ)
134128adantr 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ)) → 𝑇 ∈ ℝ)
135133, 134remulcld 10030 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ)) → (𝑙 · 𝑇) ∈ ℝ)
136132, 135readdcld 10029 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ)) → ((𝑄𝑖) + (𝑙 · 𝑇)) ∈ ℝ)
137136rexrd 10049 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ)) → ((𝑄𝑖) + (𝑙 · 𝑇)) ∈ ℝ*)
138137adantr 481 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ)) ∧ 𝑡 ∈ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))) → ((𝑄𝑖) + (𝑙 · 𝑇)) ∈ ℝ*)
139117, 135readdcld 10029 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ)) → ((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)) ∈ ℝ)
140139rexrd 10049 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ)) → ((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)) ∈ ℝ*)
141140adantr 481 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ)) ∧ 𝑡 ∈ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))) → ((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)) ∈ ℝ*)
142 simpr 477 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ)) ∧ 𝑡 ∈ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))) → 𝑡 ∈ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇))))
143 ioogtlb 39163 . . . . . . . . . . . . . . . . . 18 ((((𝑄𝑖) + (𝑙 · 𝑇)) ∈ ℝ* ∧ ((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)) ∈ ℝ*𝑡 ∈ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))) → ((𝑄𝑖) + (𝑙 · 𝑇)) < 𝑡)
144138, 141, 142, 143syl3anc 1323 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ)) ∧ 𝑡 ∈ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))) → ((𝑄𝑖) + (𝑙 · 𝑇)) < 𝑡)
145132adantr 481 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ)) ∧ 𝑡 ∈ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))) → (𝑄𝑖) ∈ ℝ)
146145, 130, 121ltaddsubd 10587 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ)) ∧ 𝑡 ∈ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))) → (((𝑄𝑖) + (𝑙 · 𝑇)) < 𝑡 ↔ (𝑄𝑖) < (𝑡 − (𝑙 · 𝑇))))
147144, 146mpbid 222 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ)) ∧ 𝑡 ∈ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))) → (𝑄𝑖) < (𝑡 − (𝑙 · 𝑇)))
148 iooltub 39181 . . . . . . . . . . . . . . . . . 18 ((((𝑄𝑖) + (𝑙 · 𝑇)) ∈ ℝ* ∧ ((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)) ∈ ℝ*𝑡 ∈ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))) → 𝑡 < ((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))
149138, 141, 142, 148syl3anc 1323 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ)) ∧ 𝑡 ∈ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))) → 𝑡 < ((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))
150121, 130, 118ltsubaddd 10583 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ)) ∧ 𝑡 ∈ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))) → ((𝑡 − (𝑙 · 𝑇)) < (𝑄‘(𝑖 + 1)) ↔ 𝑡 < ((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇))))
151149, 150mpbird 247 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ)) ∧ 𝑡 ∈ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))) → (𝑡 − (𝑙 · 𝑇)) < (𝑄‘(𝑖 + 1)))
152113, 119, 131, 147, 151eliood 39166 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ)) ∧ 𝑡 ∈ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))) → (𝑡 − (𝑙 · 𝑇)) ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
15397, 100, 152syl2anc 692 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ) ∧ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1))) ⊆ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))) ∧ 𝑡 ∈ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1)))) → (𝑡 − (𝑙 · 𝑇)) ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
15495, 153sseldd 3589 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ) ∧ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1))) ⊆ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))) ∧ 𝑡 ∈ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1)))) → (𝑡 − (𝑙 · 𝑇)) ∈ dom 𝐺)
155 elioore 12163 . . . . . . . . . . . . . . . 16 (𝑡 ∈ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1))) → 𝑡 ∈ ℝ)
156 recn 9986 . . . . . . . . . . . . . . . . . . . . . 22 (𝑡 ∈ ℝ → 𝑡 ∈ ℂ)
157156adantl 482 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑙 ∈ ℤ) ∧ 𝑡 ∈ ℝ) → 𝑡 ∈ ℂ)
158 zcn 11342 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑙 ∈ ℤ → 𝑙 ∈ ℂ)
159158ad2antlr 762 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑙 ∈ ℤ) ∧ 𝑡 ∈ ℝ) → 𝑙 ∈ ℂ)
160128recnd 10028 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝑇 ∈ ℂ)
161160ad2antrr 761 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑙 ∈ ℤ) ∧ 𝑡 ∈ ℝ) → 𝑇 ∈ ℂ)
162159, 161mulcld 10020 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑙 ∈ ℤ) ∧ 𝑡 ∈ ℝ) → (𝑙 · 𝑇) ∈ ℂ)
163157, 162npcand 10356 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑙 ∈ ℤ) ∧ 𝑡 ∈ ℝ) → ((𝑡 − (𝑙 · 𝑇)) + (𝑙 · 𝑇)) = 𝑡)
164163eqcomd 2627 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑙 ∈ ℤ) ∧ 𝑡 ∈ ℝ) → 𝑡 = ((𝑡 − (𝑙 · 𝑇)) + (𝑙 · 𝑇)))
165164adantr 481 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑙 ∈ ℤ) ∧ 𝑡 ∈ ℝ) ∧ (𝑡 − (𝑙 · 𝑇)) ∈ dom 𝐺) → 𝑡 = ((𝑡 − (𝑙 · 𝑇)) + (𝑙 · 𝑇)))
166 ovex 6643 . . . . . . . . . . . . . . . . . . . . 21 (𝑡 − (𝑙 · 𝑇)) ∈ V
167 eleq1 2686 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑠 = (𝑡 − (𝑙 · 𝑇)) → (𝑠 ∈ dom 𝐺 ↔ (𝑡 − (𝑙 · 𝑇)) ∈ dom 𝐺))
168167anbi2d 739 . . . . . . . . . . . . . . . . . . . . . 22 (𝑠 = (𝑡 − (𝑙 · 𝑇)) → (((𝜑𝑙 ∈ ℤ) ∧ 𝑠 ∈ dom 𝐺) ↔ ((𝜑𝑙 ∈ ℤ) ∧ (𝑡 − (𝑙 · 𝑇)) ∈ dom 𝐺)))
169 oveq1 6622 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑠 = (𝑡 − (𝑙 · 𝑇)) → (𝑠 + (𝑙 · 𝑇)) = ((𝑡 − (𝑙 · 𝑇)) + (𝑙 · 𝑇)))
170169eleq1d 2683 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑠 = (𝑡 − (𝑙 · 𝑇)) → ((𝑠 + (𝑙 · 𝑇)) ∈ dom 𝐺 ↔ ((𝑡 − (𝑙 · 𝑇)) + (𝑙 · 𝑇)) ∈ dom 𝐺))
171169fveq2d 6162 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑠 = (𝑡 − (𝑙 · 𝑇)) → (𝐺‘(𝑠 + (𝑙 · 𝑇))) = (𝐺‘((𝑡 − (𝑙 · 𝑇)) + (𝑙 · 𝑇))))
172 fveq2 6158 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑠 = (𝑡 − (𝑙 · 𝑇)) → (𝐺𝑠) = (𝐺‘(𝑡 − (𝑙 · 𝑇))))
173171, 172eqeq12d 2636 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑠 = (𝑡 − (𝑙 · 𝑇)) → ((𝐺‘(𝑠 + (𝑙 · 𝑇))) = (𝐺𝑠) ↔ (𝐺‘((𝑡 − (𝑙 · 𝑇)) + (𝑙 · 𝑇))) = (𝐺‘(𝑡 − (𝑙 · 𝑇)))))
174170, 173anbi12d 746 . . . . . . . . . . . . . . . . . . . . . 22 (𝑠 = (𝑡 − (𝑙 · 𝑇)) → (((𝑠 + (𝑙 · 𝑇)) ∈ dom 𝐺 ∧ (𝐺‘(𝑠 + (𝑙 · 𝑇))) = (𝐺𝑠)) ↔ (((𝑡 − (𝑙 · 𝑇)) + (𝑙 · 𝑇)) ∈ dom 𝐺 ∧ (𝐺‘((𝑡 − (𝑙 · 𝑇)) + (𝑙 · 𝑇))) = (𝐺‘(𝑡 − (𝑙 · 𝑇))))))
175168, 174imbi12d 334 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 = (𝑡 − (𝑙 · 𝑇)) → ((((𝜑𝑙 ∈ ℤ) ∧ 𝑠 ∈ dom 𝐺) → ((𝑠 + (𝑙 · 𝑇)) ∈ dom 𝐺 ∧ (𝐺‘(𝑠 + (𝑙 · 𝑇))) = (𝐺𝑠))) ↔ (((𝜑𝑙 ∈ ℤ) ∧ (𝑡 − (𝑙 · 𝑇)) ∈ dom 𝐺) → (((𝑡 − (𝑙 · 𝑇)) + (𝑙 · 𝑇)) ∈ dom 𝐺 ∧ (𝐺‘((𝑡 − (𝑙 · 𝑇)) + (𝑙 · 𝑇))) = (𝐺‘(𝑡 − (𝑙 · 𝑇)))))))
176 ax-resscn 9953 . . . . . . . . . . . . . . . . . . . . . . . . 25 ℝ ⊆ ℂ
177176a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → ℝ ⊆ ℂ)
1786, 177fssd 6024 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝐹:ℝ⟶ℂ)
179178adantr 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑙 ∈ ℤ) → 𝐹:ℝ⟶ℂ)
180122adantl 482 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑙 ∈ ℤ) → 𝑙 ∈ ℝ)
181128adantr 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑙 ∈ ℤ) → 𝑇 ∈ ℝ)
182180, 181remulcld 10030 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑙 ∈ ℤ) → (𝑙 · 𝑇) ∈ ℝ)
183178ad2antrr 761 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑙 ∈ ℤ) ∧ 𝑠 ∈ ℝ) → 𝐹:ℝ⟶ℂ)
184128ad2antrr 761 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑙 ∈ ℤ) ∧ 𝑠 ∈ ℝ) → 𝑇 ∈ ℝ)
185 simplr 791 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑙 ∈ ℤ) ∧ 𝑠 ∈ ℝ) → 𝑙 ∈ ℤ)
186 simpr 477 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑙 ∈ ℤ) ∧ 𝑠 ∈ ℝ) → 𝑠 ∈ ℝ)
187 fourierdlem97.fper . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
188187ad4ant14 1290 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑙 ∈ ℤ) ∧ 𝑠 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
189183, 184, 185, 186, 188fperiodmul 39017 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑙 ∈ ℤ) ∧ 𝑠 ∈ ℝ) → (𝐹‘(𝑠 + (𝑙 · 𝑇))) = (𝐹𝑠))
190179, 182, 189, 10fperdvper 39470 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑙 ∈ ℤ) ∧ 𝑠 ∈ dom 𝐺) → ((𝑠 + (𝑙 · 𝑇)) ∈ dom 𝐺 ∧ (𝐺‘(𝑠 + (𝑙 · 𝑇))) = (𝐺𝑠)))
191166, 175, 190vtocl 3249 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑙 ∈ ℤ) ∧ (𝑡 − (𝑙 · 𝑇)) ∈ dom 𝐺) → (((𝑡 − (𝑙 · 𝑇)) + (𝑙 · 𝑇)) ∈ dom 𝐺 ∧ (𝐺‘((𝑡 − (𝑙 · 𝑇)) + (𝑙 · 𝑇))) = (𝐺‘(𝑡 − (𝑙 · 𝑇)))))
192191simpld 475 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑙 ∈ ℤ) ∧ (𝑡 − (𝑙 · 𝑇)) ∈ dom 𝐺) → ((𝑡 − (𝑙 · 𝑇)) + (𝑙 · 𝑇)) ∈ dom 𝐺)
193192adantlr 750 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑙 ∈ ℤ) ∧ 𝑡 ∈ ℝ) ∧ (𝑡 − (𝑙 · 𝑇)) ∈ dom 𝐺) → ((𝑡 − (𝑙 · 𝑇)) + (𝑙 · 𝑇)) ∈ dom 𝐺)
194165, 193eqeltrd 2698 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑙 ∈ ℤ) ∧ 𝑡 ∈ ℝ) ∧ (𝑡 − (𝑙 · 𝑇)) ∈ dom 𝐺) → 𝑡 ∈ dom 𝐺)
195194ex 450 . . . . . . . . . . . . . . . 16 (((𝜑𝑙 ∈ ℤ) ∧ 𝑡 ∈ ℝ) → ((𝑡 − (𝑙 · 𝑇)) ∈ dom 𝐺𝑡 ∈ dom 𝐺))
196155, 195sylan2 491 . . . . . . . . . . . . . . 15 (((𝜑𝑙 ∈ ℤ) ∧ 𝑡 ∈ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1)))) → ((𝑡 − (𝑙 · 𝑇)) ∈ dom 𝐺𝑡 ∈ dom 𝐺))
197196adantlrl 755 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ)) ∧ 𝑡 ∈ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1)))) → ((𝑡 − (𝑙 · 𝑇)) ∈ dom 𝐺𝑡 ∈ dom 𝐺))
1981973adantl3 1217 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ) ∧ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1))) ⊆ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))) ∧ 𝑡 ∈ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1)))) → ((𝑡 − (𝑙 · 𝑇)) ∈ dom 𝐺𝑡 ∈ dom 𝐺))
199154, 198mpd 15 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ) ∧ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1))) ⊆ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))) ∧ 𝑡 ∈ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1)))) → 𝑡 ∈ dom 𝐺)
200199ralrimiva 2962 . . . . . . . . . . 11 ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ) ∧ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1))) ⊆ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))) → ∀𝑡 ∈ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1)))𝑡 ∈ dom 𝐺)
201 dfss3 3578 . . . . . . . . . . 11 (((𝑉𝐽)(,)(𝑉‘(𝐽 + 1))) ⊆ dom 𝐺 ↔ ∀𝑡 ∈ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1)))𝑡 ∈ dom 𝐺)
202200, 201sylibr 224 . . . . . . . . . 10 ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ) ∧ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1))) ⊆ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇)))) → ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1))) ⊆ dom 𝐺)
2032023exp 1261 . . . . . . . . 9 (𝜑 → ((𝑖 ∈ (0..^𝑀) ∧ 𝑙 ∈ ℤ) → (((𝑉𝐽)(,)(𝑉‘(𝐽 + 1))) ⊆ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇))) → ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1))) ⊆ dom 𝐺)))
204203rexlimdvv 3032 . . . . . . . 8 (𝜑 → (∃𝑖 ∈ (0..^𝑀)∃𝑙 ∈ ℤ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1))) ⊆ (((𝑄𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇))) → ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1))) ⊆ dom 𝐺))
20578, 204mpd 15 . . . . . . 7 (𝜑 → ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1))) ⊆ dom 𝐺)
206205sselda 3588 . . . . . 6 ((𝜑𝑠 ∈ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1)))) → 𝑠 ∈ dom 𝐺)
207206iftrued 4072 . . . . 5 ((𝜑𝑠 ∈ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1)))) → if(𝑠 ∈ dom 𝐺, (𝐺𝑠), 0) = (𝐺𝑠))
20829, 207eqtr2d 2656 . . . 4 ((𝜑𝑠 ∈ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1)))) → (𝐺𝑠) = (𝐻𝑠))
209208mpteq2dva 4714 . . 3 (𝜑 → (𝑠 ∈ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1))) ↦ (𝐺𝑠)) = (𝑠 ∈ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1))) ↦ (𝐻𝑠)))
21015a1i 11 . . . . . 6 (𝜑 → dom 𝐺 = dom (ℝ D 𝐹))
211210feq2d 5998 . . . . 5 (𝜑 → (𝐺:dom 𝐺⟶ℝ ↔ 𝐺:dom (ℝ D 𝐹)⟶ℝ))
21212, 211mpbird 247 . . . 4 (𝜑𝐺:dom 𝐺⟶ℝ)
213212, 205feqresmpt 6217 . . 3 (𝜑 → (𝐺 ↾ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1)))) = (𝑠 ∈ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1))) ↦ (𝐺𝑠)))
21425, 27fmptd 6351 . . . 4 (𝜑𝐻:ℝ⟶ℝ)
215214, 2feqresmpt 6217 . . 3 (𝜑 → (𝐻 ↾ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1)))) = (𝑠 ∈ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1))) ↦ (𝐻𝑠)))
216209, 213, 2153eqtr4d 2665 . 2 (𝜑 → (𝐺 ↾ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1)))) = (𝐻 ↾ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1)))))
217214, 177fssd 6024 . . 3 (𝜑𝐻:ℝ⟶ℂ)
21827a1i 11 . . . . . 6 (((𝜑𝑥 ∈ ℝ) ∧ 𝑥 ∈ dom 𝐺) → 𝐻 = (𝑠 ∈ ℝ ↦ if(𝑠 ∈ dom 𝐺, (𝐺𝑠), 0)))
219 eleq1 2686 . . . . . . . . 9 (𝑠 = (𝑥 + 𝑇) → (𝑠 ∈ dom 𝐺 ↔ (𝑥 + 𝑇) ∈ dom 𝐺))
220 fveq2 6158 . . . . . . . . 9 (𝑠 = (𝑥 + 𝑇) → (𝐺𝑠) = (𝐺‘(𝑥 + 𝑇)))
221219, 220ifbieq1d 4087 . . . . . . . 8 (𝑠 = (𝑥 + 𝑇) → if(𝑠 ∈ dom 𝐺, (𝐺𝑠), 0) = if((𝑥 + 𝑇) ∈ dom 𝐺, (𝐺‘(𝑥 + 𝑇)), 0))
222178, 128, 187, 10fperdvper 39470 . . . . . . . . . 10 ((𝜑𝑥 ∈ dom 𝐺) → ((𝑥 + 𝑇) ∈ dom 𝐺 ∧ (𝐺‘(𝑥 + 𝑇)) = (𝐺𝑥)))
223222simpld 475 . . . . . . . . 9 ((𝜑𝑥 ∈ dom 𝐺) → (𝑥 + 𝑇) ∈ dom 𝐺)
224223iftrued 4072 . . . . . . . 8 ((𝜑𝑥 ∈ dom 𝐺) → if((𝑥 + 𝑇) ∈ dom 𝐺, (𝐺‘(𝑥 + 𝑇)), 0) = (𝐺‘(𝑥 + 𝑇)))
225221, 224sylan9eqr 2677 . . . . . . 7 (((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑠 = (𝑥 + 𝑇)) → if(𝑠 ∈ dom 𝐺, (𝐺𝑠), 0) = (𝐺‘(𝑥 + 𝑇)))
226225adantllr 754 . . . . . 6 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑥 ∈ dom 𝐺) ∧ 𝑠 = (𝑥 + 𝑇)) → if(𝑠 ∈ dom 𝐺, (𝐺𝑠), 0) = (𝐺‘(𝑥 + 𝑇)))
227 simpr 477 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → 𝑥 ∈ ℝ)
228128adantr 481 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → 𝑇 ∈ ℝ)
229227, 228readdcld 10029 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → (𝑥 + 𝑇) ∈ ℝ)
230229adantr 481 . . . . . 6 (((𝜑𝑥 ∈ ℝ) ∧ 𝑥 ∈ dom 𝐺) → (𝑥 + 𝑇) ∈ ℝ)
231212ad2antrr 761 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ 𝑥 ∈ dom 𝐺) → 𝐺:dom 𝐺⟶ℝ)
232223adantlr 750 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ 𝑥 ∈ dom 𝐺) → (𝑥 + 𝑇) ∈ dom 𝐺)
233231, 232ffvelrnd 6326 . . . . . 6 (((𝜑𝑥 ∈ ℝ) ∧ 𝑥 ∈ dom 𝐺) → (𝐺‘(𝑥 + 𝑇)) ∈ ℝ)
234218, 226, 230, 233fvmptd 6255 . . . . 5 (((𝜑𝑥 ∈ ℝ) ∧ 𝑥 ∈ dom 𝐺) → (𝐻‘(𝑥 + 𝑇)) = (𝐺‘(𝑥 + 𝑇)))
235222simprd 479 . . . . . 6 ((𝜑𝑥 ∈ dom 𝐺) → (𝐺‘(𝑥 + 𝑇)) = (𝐺𝑥))
236235adantlr 750 . . . . 5 (((𝜑𝑥 ∈ ℝ) ∧ 𝑥 ∈ dom 𝐺) → (𝐺‘(𝑥 + 𝑇)) = (𝐺𝑥))
237 eleq1 2686 . . . . . . . . 9 (𝑠 = 𝑥 → (𝑠 ∈ dom 𝐺𝑥 ∈ dom 𝐺))
238 fveq2 6158 . . . . . . . . 9 (𝑠 = 𝑥 → (𝐺𝑠) = (𝐺𝑥))
239237, 238ifbieq1d 4087 . . . . . . . 8 (𝑠 = 𝑥 → if(𝑠 ∈ dom 𝐺, (𝐺𝑠), 0) = if(𝑥 ∈ dom 𝐺, (𝐺𝑥), 0))
240239adantl 482 . . . . . . 7 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑥 ∈ dom 𝐺) ∧ 𝑠 = 𝑥) → if(𝑠 ∈ dom 𝐺, (𝐺𝑠), 0) = if(𝑥 ∈ dom 𝐺, (𝐺𝑥), 0))
241 simplr 791 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ 𝑥 ∈ dom 𝐺) → 𝑥 ∈ ℝ)
242 simpr 477 . . . . . . . . . 10 ((𝜑𝑥 ∈ dom 𝐺) → 𝑥 ∈ dom 𝐺)
243242iftrued 4072 . . . . . . . . 9 ((𝜑𝑥 ∈ dom 𝐺) → if(𝑥 ∈ dom 𝐺, (𝐺𝑥), 0) = (𝐺𝑥))
244212ffvelrnda 6325 . . . . . . . . 9 ((𝜑𝑥 ∈ dom 𝐺) → (𝐺𝑥) ∈ ℝ)
245243, 244eqeltrd 2698 . . . . . . . 8 ((𝜑𝑥 ∈ dom 𝐺) → if(𝑥 ∈ dom 𝐺, (𝐺𝑥), 0) ∈ ℝ)
246245adantlr 750 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ 𝑥 ∈ dom 𝐺) → if(𝑥 ∈ dom 𝐺, (𝐺𝑥), 0) ∈ ℝ)
247218, 240, 241, 246fvmptd 6255 . . . . . 6 (((𝜑𝑥 ∈ ℝ) ∧ 𝑥 ∈ dom 𝐺) → (𝐻𝑥) = if(𝑥 ∈ dom 𝐺, (𝐺𝑥), 0))
248 simpr 477 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ 𝑥 ∈ dom 𝐺) → 𝑥 ∈ dom 𝐺)
249248iftrued 4072 . . . . . 6 (((𝜑𝑥 ∈ ℝ) ∧ 𝑥 ∈ dom 𝐺) → if(𝑥 ∈ dom 𝐺, (𝐺𝑥), 0) = (𝐺𝑥))
250247, 249eqtr2d 2656 . . . . 5 (((𝜑𝑥 ∈ ℝ) ∧ 𝑥 ∈ dom 𝐺) → (𝐺𝑥) = (𝐻𝑥))
251234, 236, 2503eqtrd 2659 . . . 4 (((𝜑𝑥 ∈ ℝ) ∧ 𝑥 ∈ dom 𝐺) → (𝐻‘(𝑥 + 𝑇)) = (𝐻𝑥))
252229recnd 10028 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ) → (𝑥 + 𝑇) ∈ ℂ)
253228recnd 10028 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ) → 𝑇 ∈ ℂ)
254252, 253negsubd 10358 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ) → ((𝑥 + 𝑇) + -𝑇) = ((𝑥 + 𝑇) − 𝑇))
255227recnd 10028 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ) → 𝑥 ∈ ℂ)
256255, 253pncand 10353 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ) → ((𝑥 + 𝑇) − 𝑇) = 𝑥)
257254, 256eqtr2d 2656 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ) → 𝑥 = ((𝑥 + 𝑇) + -𝑇))
258257adantr 481 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥 + 𝑇) ∈ dom 𝐺) → 𝑥 = ((𝑥 + 𝑇) + -𝑇))
259 simpr 477 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥 + 𝑇) ∈ dom 𝐺) → (𝑥 + 𝑇) ∈ dom 𝐺)
260 simpll 789 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥 + 𝑇) ∈ dom 𝐺) → 𝜑)
261260, 259jca 554 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥 + 𝑇) ∈ dom 𝐺) → (𝜑 ∧ (𝑥 + 𝑇) ∈ dom 𝐺))
262 eleq1 2686 . . . . . . . . . . . . 13 (𝑦 = (𝑥 + 𝑇) → (𝑦 ∈ dom 𝐺 ↔ (𝑥 + 𝑇) ∈ dom 𝐺))
263262anbi2d 739 . . . . . . . . . . . 12 (𝑦 = (𝑥 + 𝑇) → ((𝜑𝑦 ∈ dom 𝐺) ↔ (𝜑 ∧ (𝑥 + 𝑇) ∈ dom 𝐺)))
264 oveq1 6622 . . . . . . . . . . . . . 14 (𝑦 = (𝑥 + 𝑇) → (𝑦 + -𝑇) = ((𝑥 + 𝑇) + -𝑇))
265264eleq1d 2683 . . . . . . . . . . . . 13 (𝑦 = (𝑥 + 𝑇) → ((𝑦 + -𝑇) ∈ dom 𝐺 ↔ ((𝑥 + 𝑇) + -𝑇) ∈ dom 𝐺))
266264fveq2d 6162 . . . . . . . . . . . . . 14 (𝑦 = (𝑥 + 𝑇) → (𝐺‘(𝑦 + -𝑇)) = (𝐺‘((𝑥 + 𝑇) + -𝑇)))
267 fveq2 6158 . . . . . . . . . . . . . 14 (𝑦 = (𝑥 + 𝑇) → (𝐺𝑦) = (𝐺‘(𝑥 + 𝑇)))
268266, 267eqeq12d 2636 . . . . . . . . . . . . 13 (𝑦 = (𝑥 + 𝑇) → ((𝐺‘(𝑦 + -𝑇)) = (𝐺𝑦) ↔ (𝐺‘((𝑥 + 𝑇) + -𝑇)) = (𝐺‘(𝑥 + 𝑇))))
269265, 268anbi12d 746 . . . . . . . . . . . 12 (𝑦 = (𝑥 + 𝑇) → (((𝑦 + -𝑇) ∈ dom 𝐺 ∧ (𝐺‘(𝑦 + -𝑇)) = (𝐺𝑦)) ↔ (((𝑥 + 𝑇) + -𝑇) ∈ dom 𝐺 ∧ (𝐺‘((𝑥 + 𝑇) + -𝑇)) = (𝐺‘(𝑥 + 𝑇)))))
270263, 269imbi12d 334 . . . . . . . . . . 11 (𝑦 = (𝑥 + 𝑇) → (((𝜑𝑦 ∈ dom 𝐺) → ((𝑦 + -𝑇) ∈ dom 𝐺 ∧ (𝐺‘(𝑦 + -𝑇)) = (𝐺𝑦))) ↔ ((𝜑 ∧ (𝑥 + 𝑇) ∈ dom 𝐺) → (((𝑥 + 𝑇) + -𝑇) ∈ dom 𝐺 ∧ (𝐺‘((𝑥 + 𝑇) + -𝑇)) = (𝐺‘(𝑥 + 𝑇))))))
271128renegcld 10417 . . . . . . . . . . . 12 (𝜑 → -𝑇 ∈ ℝ)
272160mulm1d 10442 . . . . . . . . . . . . . . . . 17 (𝜑 → (-1 · 𝑇) = -𝑇)
273272eqcomd 2627 . . . . . . . . . . . . . . . 16 (𝜑 → -𝑇 = (-1 · 𝑇))
274273adantr 481 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ ℝ) → -𝑇 = (-1 · 𝑇))
275274oveq2d 6631 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ ℝ) → (𝑦 + -𝑇) = (𝑦 + (-1 · 𝑇)))
276275fveq2d 6162 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ ℝ) → (𝐹‘(𝑦 + -𝑇)) = (𝐹‘(𝑦 + (-1 · 𝑇))))
277178adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ ℝ) → 𝐹:ℝ⟶ℂ)
278128adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ ℝ) → 𝑇 ∈ ℝ)
279 1zzd 11368 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ ℝ) → 1 ∈ ℤ)
280279znegcld 11444 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ ℝ) → -1 ∈ ℤ)
281 simpr 477 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ ℝ) → 𝑦 ∈ ℝ)
282187adantlr 750 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
283277, 278, 280, 281, 282fperiodmul 39017 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ ℝ) → (𝐹‘(𝑦 + (-1 · 𝑇))) = (𝐹𝑦))
284276, 283eqtrd 2655 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ℝ) → (𝐹‘(𝑦 + -𝑇)) = (𝐹𝑦))
285178, 271, 284, 10fperdvper 39470 . . . . . . . . . . 11 ((𝜑𝑦 ∈ dom 𝐺) → ((𝑦 + -𝑇) ∈ dom 𝐺 ∧ (𝐺‘(𝑦 + -𝑇)) = (𝐺𝑦)))
286270, 285vtoclg 3256 . . . . . . . . . 10 ((𝑥 + 𝑇) ∈ dom 𝐺 → ((𝜑 ∧ (𝑥 + 𝑇) ∈ dom 𝐺) → (((𝑥 + 𝑇) + -𝑇) ∈ dom 𝐺 ∧ (𝐺‘((𝑥 + 𝑇) + -𝑇)) = (𝐺‘(𝑥 + 𝑇)))))
287259, 261, 286sylc 65 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥 + 𝑇) ∈ dom 𝐺) → (((𝑥 + 𝑇) + -𝑇) ∈ dom 𝐺 ∧ (𝐺‘((𝑥 + 𝑇) + -𝑇)) = (𝐺‘(𝑥 + 𝑇))))
288287simpld 475 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥 + 𝑇) ∈ dom 𝐺) → ((𝑥 + 𝑇) + -𝑇) ∈ dom 𝐺)
289258, 288eqeltrd 2698 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥 + 𝑇) ∈ dom 𝐺) → 𝑥 ∈ dom 𝐺)
290289stoic1a 1694 . . . . . 6 (((𝜑𝑥 ∈ ℝ) ∧ ¬ 𝑥 ∈ dom 𝐺) → ¬ (𝑥 + 𝑇) ∈ dom 𝐺)
291290iffalsed 4075 . . . . 5 (((𝜑𝑥 ∈ ℝ) ∧ ¬ 𝑥 ∈ dom 𝐺) → if((𝑥 + 𝑇) ∈ dom 𝐺, (𝐺‘(𝑥 + 𝑇)), 0) = 0)
29227a1i 11 . . . . . 6 (((𝜑𝑥 ∈ ℝ) ∧ ¬ 𝑥 ∈ dom 𝐺) → 𝐻 = (𝑠 ∈ ℝ ↦ if(𝑠 ∈ dom 𝐺, (𝐺𝑠), 0)))
293221adantl 482 . . . . . 6 ((((𝜑𝑥 ∈ ℝ) ∧ ¬ 𝑥 ∈ dom 𝐺) ∧ 𝑠 = (𝑥 + 𝑇)) → if(𝑠 ∈ dom 𝐺, (𝐺𝑠), 0) = if((𝑥 + 𝑇) ∈ dom 𝐺, (𝐺‘(𝑥 + 𝑇)), 0))
294229adantr 481 . . . . . 6 (((𝜑𝑥 ∈ ℝ) ∧ ¬ 𝑥 ∈ dom 𝐺) → (𝑥 + 𝑇) ∈ ℝ)
295 0red 10001 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ ¬ 𝑥 ∈ dom 𝐺) → 0 ∈ ℝ)
296291, 295eqeltrd 2698 . . . . . 6 (((𝜑𝑥 ∈ ℝ) ∧ ¬ 𝑥 ∈ dom 𝐺) → if((𝑥 + 𝑇) ∈ dom 𝐺, (𝐺‘(𝑥 + 𝑇)), 0) ∈ ℝ)
297292, 293, 294, 296fvmptd 6255 . . . . 5 (((𝜑𝑥 ∈ ℝ) ∧ ¬ 𝑥 ∈ dom 𝐺) → (𝐻‘(𝑥 + 𝑇)) = if((𝑥 + 𝑇) ∈ dom 𝐺, (𝐺‘(𝑥 + 𝑇)), 0))
298 simpr 477 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ ¬ 𝑥 ∈ dom 𝐺) → ¬ 𝑥 ∈ dom 𝐺)
299298iffalsed 4075 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ ¬ 𝑥 ∈ dom 𝐺) → if(𝑥 ∈ dom 𝐺, (𝐺𝑥), 0) = 0)
300239, 299sylan9eqr 2677 . . . . . 6 ((((𝜑𝑥 ∈ ℝ) ∧ ¬ 𝑥 ∈ dom 𝐺) ∧ 𝑠 = 𝑥) → if(𝑠 ∈ dom 𝐺, (𝐺𝑠), 0) = 0)
301 simplr 791 . . . . . 6 (((𝜑𝑥 ∈ ℝ) ∧ ¬ 𝑥 ∈ dom 𝐺) → 𝑥 ∈ ℝ)
302292, 300, 301, 295fvmptd 6255 . . . . 5 (((𝜑𝑥 ∈ ℝ) ∧ ¬ 𝑥 ∈ dom 𝐺) → (𝐻𝑥) = 0)
303291, 297, 3023eqtr4d 2665 . . . 4 (((𝜑𝑥 ∈ ℝ) ∧ ¬ 𝑥 ∈ dom 𝐺) → (𝐻‘(𝑥 + 𝑇)) = (𝐻𝑥))
304251, 303pm2.61dan 831 . . 3 ((𝜑𝑥 ∈ ℝ) → (𝐻‘(𝑥 + 𝑇)) = (𝐻𝑥))
305 elioore 12163 . . . . . . . . . 10 (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) → 𝑠 ∈ ℝ)
306305adantl 482 . . . . . . . . 9 ((𝜑𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑠 ∈ ℝ)
307305, 25sylan2 491 . . . . . . . . 9 ((𝜑𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → if(𝑠 ∈ dom 𝐺, (𝐺𝑠), 0) ∈ ℝ)
308306, 307, 28syl2anc 692 . . . . . . . 8 ((𝜑𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝐻𝑠) = if(𝑠 ∈ dom 𝐺, (𝐺𝑠), 0))
309308adantlr 750 . . . . . . 7 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝐻𝑠) = if(𝑠 ∈ dom 𝐺, (𝐺𝑠), 0))
31091iftrued 4072 . . . . . . 7 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → if(𝑠 ∈ dom 𝐺, (𝐺𝑠), 0) = (𝐺𝑠))
311309, 310eqtrd 2655 . . . . . 6 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝐻𝑠) = (𝐺𝑠))
312311mpteq2dva 4714 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐻𝑠)) = (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐺𝑠)))
313214adantr 481 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐻:ℝ⟶ℝ)
314 ioossre 12193 . . . . . . 7 ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ℝ
315314a1i 11 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ℝ)
316313, 315feqresmpt 6217 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐻 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐻𝑠)))
317212adantr 481 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐺:dom 𝐺⟶ℝ)
318317, 94feqresmpt 6217 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐺𝑠)))
319312, 316, 3183eqtr4d 2665 . . . 4 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐻 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))
320319, 81eqeltrd 2698 . . 3 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐻 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
321 eqid 2621 . . 3 (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = 𝐶 ∧ (𝑝𝑚) = 𝐷) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))}) = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = 𝐶 ∧ (𝑝𝑚) = 𝐷) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
322 oveq1 6622 . . . . . . . 8 (𝑧 = 𝑦 → (𝑧 + (𝑙 · 𝑇)) = (𝑦 + (𝑙 · 𝑇)))
323322eleq1d 2683 . . . . . . 7 (𝑧 = 𝑦 → ((𝑧 + (𝑙 · 𝑇)) ∈ ran 𝑄 ↔ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄))
324323rexbidv 3047 . . . . . 6 (𝑧 = 𝑦 → (∃𝑙 ∈ ℤ (𝑧 + (𝑙 · 𝑇)) ∈ ran 𝑄 ↔ ∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄))
325324cbvrabv 3189 . . . . 5 {𝑧 ∈ (𝐶[,]𝐷) ∣ ∃𝑙 ∈ ℤ (𝑧 + (𝑙 · 𝑇)) ∈ ran 𝑄} = {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄}
326325uneq2i 3748 . . . 4 ({𝐶, 𝐷} ∪ {𝑧 ∈ (𝐶[,]𝐷) ∣ ∃𝑙 ∈ ℤ (𝑧 + (𝑙 · 𝑇)) ∈ ran 𝑄}) = ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄})
327326eqcomi 2630 . . 3 ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄}) = ({𝐶, 𝐷} ∪ {𝑧 ∈ (𝐶[,]𝐷) ∣ ∃𝑙 ∈ ℤ (𝑧 + (𝑙 · 𝑇)) ∈ ran 𝑄})
32854fveq2i 6161 . . . 4 (#‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) = (#‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄}))
329328oveq1i 6625 . . 3 ((#‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1) = ((#‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄})) − 1)
330 isoeq5 6536 . . . . . 6 (({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄}) = ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃ ∈ ℤ (𝑦 + ( · 𝑇)) ∈ ran 𝑄}) → (𝑔 Isom < , < ((0...((#‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄})) ↔ 𝑔 Isom < , < ((0...((#‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃ ∈ ℤ (𝑦 + ( · 𝑇)) ∈ ran 𝑄}))))
33161, 330ax-mp 5 . . . . 5 (𝑔 Isom < , < ((0...((#‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄})) ↔ 𝑔 Isom < , < ((0...((#‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃ ∈ ℤ (𝑦 + ( · 𝑇)) ∈ ran 𝑄})))
332331iotabii 5842 . . . 4 (℩𝑔𝑔 Isom < , < ((0...((#‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄}))) = (℩𝑔𝑔 Isom < , < ((0...((#‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃ ∈ ℤ (𝑦 + ( · 𝑇)) ∈ ran 𝑄})))
333 isoeq1 6532 . . . . 5 (𝑓 = 𝑔 → (𝑓 Isom < , < ((0...((#‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄})) ↔ 𝑔 Isom < , < ((0...((#‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄}))))
334333cbviotav 5826 . . . 4 (℩𝑓𝑓 Isom < , < ((0...((#‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄}))) = (℩𝑔𝑔 Isom < , < ((0...((#‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄})))
335332, 334, 653eqtr4ri 2654 . . 3 𝑉 = (℩𝑓𝑓 Isom < , < ((0...((#‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄})))
336 id 22 . . . . 5 (𝑣 = 𝑥𝑣 = 𝑥)
337 oveq2 6623 . . . . . . . 8 (𝑣 = 𝑥 → (𝐵𝑣) = (𝐵𝑥))
338337oveq1d 6630 . . . . . . 7 (𝑣 = 𝑥 → ((𝐵𝑣) / 𝑇) = ((𝐵𝑥) / 𝑇))
339338fveq2d 6162 . . . . . 6 (𝑣 = 𝑥 → (⌊‘((𝐵𝑣) / 𝑇)) = (⌊‘((𝐵𝑥) / 𝑇)))
340339oveq1d 6630 . . . . 5 (𝑣 = 𝑥 → ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇) = ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇))
341336, 340oveq12d 6633 . . . 4 (𝑣 = 𝑥 → (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)) = (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
342341cbvmptv 4720 . . 3 (𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇))) = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
343 eqeq1 2625 . . . . 5 (𝑢 = 𝑧 → (𝑢 = 𝐵𝑧 = 𝐵))
344 id 22 . . . . 5 (𝑢 = 𝑧𝑢 = 𝑧)
345343, 344ifbieq2d 4089 . . . 4 (𝑢 = 𝑧 → if(𝑢 = 𝐵, 𝐴, 𝑢) = if(𝑧 = 𝐵, 𝐴, 𝑧))
346345cbvmptv 4720 . . 3 (𝑢 ∈ (𝐴(,]𝐵) ↦ if(𝑢 = 𝐵, 𝐴, 𝑢)) = (𝑧 ∈ (𝐴(,]𝐵) ↦ if(𝑧 = 𝐵, 𝐴, 𝑧))
347 eqid 2621 . . 3 ((𝑉‘(𝐽 + 1)) − ((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘(𝑉‘(𝐽 + 1)))) = ((𝑉‘(𝐽 + 1)) − ((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘(𝑉‘(𝐽 + 1))))
348 eqid 2621 . . 3 (𝐻 ↾ (((𝑢 ∈ (𝐴(,]𝐵) ↦ if(𝑢 = 𝐵, 𝐴, 𝑢))‘((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘(𝑉𝐽)))(,)((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘(𝑉‘(𝐽 + 1))))) = (𝐻 ↾ (((𝑢 ∈ (𝐴(,]𝐵) ↦ if(𝑢 = 𝐵, 𝐴, 𝑢))‘((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘(𝑉𝐽)))(,)((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘(𝑉‘(𝐽 + 1)))))
349 eqid 2621 . . 3 (𝑧 ∈ ((((𝑢 ∈ (𝐴(,]𝐵) ↦ if(𝑢 = 𝐵, 𝐴, 𝑢))‘((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘(𝑉𝐽))) + ((𝑉‘(𝐽 + 1)) − ((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘(𝑉‘(𝐽 + 1)))))(,)(((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘(𝑉‘(𝐽 + 1))) + ((𝑉‘(𝐽 + 1)) − ((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘(𝑉‘(𝐽 + 1)))))) ↦ ((𝐻 ↾ (((𝑢 ∈ (𝐴(,]𝐵) ↦ if(𝑢 = 𝐵, 𝐴, 𝑢))‘((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘(𝑉𝐽)))(,)((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘(𝑉‘(𝐽 + 1)))))‘(𝑧 − ((𝑉‘(𝐽 + 1)) − ((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘(𝑉‘(𝐽 + 1))))))) = (𝑧 ∈ ((((𝑢 ∈ (𝐴(,]𝐵) ↦ if(𝑢 = 𝐵, 𝐴, 𝑢))‘((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘(𝑉𝐽))) + ((𝑉‘(𝐽 + 1)) − ((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘(𝑉‘(𝐽 + 1)))))(,)(((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘(𝑉‘(𝐽 + 1))) + ((𝑉‘(𝐽 + 1)) − ((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘(𝑉‘(𝐽 + 1)))))) ↦ ((𝐻 ↾ (((𝑢 ∈ (𝐴(,]𝐵) ↦ if(𝑢 = 𝐵, 𝐴, 𝑢))‘((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘(𝑉𝐽)))(,)((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘(𝑉‘(𝐽 + 1)))))‘(𝑧 − ((𝑉‘(𝐽 + 1)) − ((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘(𝑉‘(𝐽 + 1)))))))
350 fveq2 6158 . . . . . . . 8 (𝑖 = 𝑡 → (𝑄𝑖) = (𝑄𝑡))
351350breq1d 4633 . . . . . . 7 (𝑖 = 𝑡 → ((𝑄𝑖) ≤ ((𝑢 ∈ (𝐴(,]𝐵) ↦ if(𝑢 = 𝐵, 𝐴, 𝑢))‘((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘𝑥)) ↔ (𝑄𝑡) ≤ ((𝑢 ∈ (𝐴(,]𝐵) ↦ if(𝑢 = 𝐵, 𝐴, 𝑢))‘((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘𝑥))))
352351cbvrabv 3189 . . . . . 6 {𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ ((𝑢 ∈ (𝐴(,]𝐵) ↦ if(𝑢 = 𝐵, 𝐴, 𝑢))‘((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘𝑥))} = {𝑡 ∈ (0..^𝑀) ∣ (𝑄𝑡) ≤ ((𝑢 ∈ (𝐴(,]𝐵) ↦ if(𝑢 = 𝐵, 𝐴, 𝑢))‘((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘𝑥))}
353 fveq2 6158 . . . . . . . . . 10 (𝑤 = 𝑥 → ((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘𝑤) = ((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘𝑥))
354353fveq2d 6162 . . . . . . . . 9 (𝑤 = 𝑥 → ((𝑢 ∈ (𝐴(,]𝐵) ↦ if(𝑢 = 𝐵, 𝐴, 𝑢))‘((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘𝑤)) = ((𝑢 ∈ (𝐴(,]𝐵) ↦ if(𝑢 = 𝐵, 𝐴, 𝑢))‘((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘𝑥)))
355354eqcomd 2627 . . . . . . . 8 (𝑤 = 𝑥 → ((𝑢 ∈ (𝐴(,]𝐵) ↦ if(𝑢 = 𝐵, 𝐴, 𝑢))‘((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘𝑥)) = ((𝑢 ∈ (𝐴(,]𝐵) ↦ if(𝑢 = 𝐵, 𝐴, 𝑢))‘((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘𝑤)))
356355breq2d 4635 . . . . . . 7 (𝑤 = 𝑥 → ((𝑄𝑡) ≤ ((𝑢 ∈ (𝐴(,]𝐵) ↦ if(𝑢 = 𝐵, 𝐴, 𝑢))‘((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘𝑥)) ↔ (𝑄𝑡) ≤ ((𝑢 ∈ (𝐴(,]𝐵) ↦ if(𝑢 = 𝐵, 𝐴, 𝑢))‘((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘𝑤))))
357356rabbidv 3181 . . . . . 6 (𝑤 = 𝑥 → {𝑡 ∈ (0..^𝑀) ∣ (𝑄𝑡) ≤ ((𝑢 ∈ (𝐴(,]𝐵) ↦ if(𝑢 = 𝐵, 𝐴, 𝑢))‘((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘𝑥))} = {𝑡 ∈ (0..^𝑀) ∣ (𝑄𝑡) ≤ ((𝑢 ∈ (𝐴(,]𝐵) ↦ if(𝑢 = 𝐵, 𝐴, 𝑢))‘((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘𝑤))})
358352, 357syl5req 2668 . . . . 5 (𝑤 = 𝑥 → {𝑡 ∈ (0..^𝑀) ∣ (𝑄𝑡) ≤ ((𝑢 ∈ (𝐴(,]𝐵) ↦ if(𝑢 = 𝐵, 𝐴, 𝑢))‘((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘𝑤))} = {𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ ((𝑢 ∈ (𝐴(,]𝐵) ↦ if(𝑢 = 𝐵, 𝐴, 𝑢))‘((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘𝑥))})
359358supeq1d 8312 . . . 4 (𝑤 = 𝑥 → sup({𝑡 ∈ (0..^𝑀) ∣ (𝑄𝑡) ≤ ((𝑢 ∈ (𝐴(,]𝐵) ↦ if(𝑢 = 𝐵, 𝐴, 𝑢))‘((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘𝑤))}, ℝ, < ) = sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ ((𝑢 ∈ (𝐴(,]𝐵) ↦ if(𝑢 = 𝐵, 𝐴, 𝑢))‘((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘𝑥))}, ℝ, < ))
360359cbvmptv 4720 . . 3 (𝑤 ∈ ℝ ↦ sup({𝑡 ∈ (0..^𝑀) ∣ (𝑄𝑡) ≤ ((𝑢 ∈ (𝐴(,]𝐵) ↦ if(𝑢 = 𝐵, 𝐴, 𝑢))‘((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘𝑤))}, ℝ, < )) = (𝑥 ∈ ℝ ↦ sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ ((𝑢 ∈ (𝐴(,]𝐵) ↦ if(𝑢 = 𝐵, 𝐴, 𝑢))‘((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘𝑥))}, ℝ, < ))
36131, 30, 32, 33, 217, 304, 320, 34, 35, 321, 327, 329, 335, 342, 346, 66, 347, 348, 349, 360fourierdlem90 39750 . 2 (𝜑 → (𝐻 ↾ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1)))) ∈ (((𝑉𝐽)(,)(𝑉‘(𝐽 + 1)))–cn→ℂ))
362216, 361eqeltrd 2698 1 (𝜑 → (𝐺 ↾ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1)))) ∈ (((𝑉𝐽)(,)(𝑉‘(𝐽 + 1)))–cn→ℂ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wcel 1987  wral 2908  wrex 2909  {crab 2912  cun 3558  wss 3560  ifcif 4064  {cpr 4157   class class class wbr 4623  cmpt 4683  dom cdm 5084  ran crn 5085  cres 5086  cio 5818  Fun wfun 5851  wf 5853  cfv 5857   Isom wiso 5858  (class class class)co 6615  𝑚 cmap 7817  supcsup 8306  cc 9894  cr 9895  0cc0 9896  1c1 9897   + caddc 9899   · cmul 9901  +∞cpnf 10031  *cxr 10033   < clt 10034  cle 10035  cmin 10226  -cneg 10227   / cdiv 10644  cn 10980  cz 11337  (,)cioo 12133  (,]cioc 12134  [,]cicc 12136  ...cfz 12284  ..^cfzo 12422  cfl 12547  #chash 13073  cnccncf 22619   D cdv 23567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4741  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914  ax-inf2 8498  ax-cnex 9952  ax-resscn 9953  ax-1cn 9954  ax-icn 9955  ax-addcl 9956  ax-addrcl 9957  ax-mulcl 9958  ax-mulrcl 9959  ax-mulcom 9960  ax-addass 9961  ax-mulass 9962  ax-distr 9963  ax-i2m1 9964  ax-1ne0 9965  ax-1rid 9966  ax-rnegex 9967  ax-rrecex 9968  ax-cnre 9969  ax-pre-lttri 9970  ax-pre-lttrn 9971  ax-pre-ltadd 9972  ax-pre-mulgt0 9973  ax-pre-sup 9974
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2913  df-rex 2914  df-reu 2915  df-rmo 2916  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-tp 4160  df-op 4162  df-uni 4410  df-int 4448  df-iun 4494  df-iin 4495  df-br 4624  df-opab 4684  df-mpt 4685  df-tr 4723  df-eprel 4995  df-id 4999  df-po 5005  df-so 5006  df-fr 5043  df-se 5044  df-we 5045  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-pred 5649  df-ord 5695  df-on 5696  df-lim 5697  df-suc 5698  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-isom 5866  df-riota 6576  df-ov 6618  df-oprab 6619  df-mpt2 6620  df-om 7028  df-1st 7128  df-2nd 7129  df-wrecs 7367  df-recs 7428  df-rdg 7466  df-1o 7520  df-oadd 7524  df-er 7702  df-map 7819  df-pm 7820  df-en 7916  df-dom 7917  df-sdom 7918  df-fin 7919  df-fi 8277  df-sup 8308  df-inf 8309  df-oi 8375  df-card 8725  df-cda 8950  df-pnf 10036  df-mnf 10037  df-xr 10038  df-ltxr 10039  df-le 10040  df-sub 10228  df-neg 10229  df-div 10645  df-nn 10981  df-2 11039  df-3 11040  df-4 11041  df-5 11042  df-6 11043  df-7 11044  df-8 11045  df-9 11046  df-n0 11253  df-xnn0 11324  df-z 11338  df-dec 11454  df-uz 11648  df-q 11749  df-rp 11793  df-xneg 11906  df-xadd 11907  df-xmul 11908  df-ioo 12137  df-ioc 12138  df-ico 12139  df-icc 12140  df-fz 12285  df-fzo 12423  df-fl 12549  df-seq 12758  df-exp 12817  df-hash 13074  df-cj 13789  df-re 13790  df-im 13791  df-sqrt 13925  df-abs 13926  df-struct 15802  df-ndx 15803  df-slot 15804  df-base 15805  df-plusg 15894  df-mulr 15895  df-starv 15896  df-tset 15900  df-ple 15901  df-ds 15904  df-unif 15905  df-rest 16023  df-topn 16024  df-topgen 16044  df-psmet 19678  df-xmet 19679  df-met 19680  df-bl 19681  df-mopn 19682  df-fbas 19683  df-fg 19684  df-cnfld 19687  df-top 20639  df-topon 20656  df-topsp 20677  df-bases 20690  df-cld 20763  df-ntr 20764  df-cls 20765  df-nei 20842  df-lp 20880  df-perf 20881  df-cn 20971  df-cnp 20972  df-haus 21059  df-cmp 21130  df-fil 21590  df-fm 21682  df-flim 21683  df-flf 21684  df-xms 22065  df-ms 22066  df-cncf 22621  df-limc 23570  df-dv 23571
This theorem is referenced by:  fourierdlem112  39772
  Copyright terms: Public domain W3C validator