![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fperiodmul | Structured version Visualization version GIF version |
Description: A function with period T is also periodic with period multiple of T. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
fperiodmul.f | ⊢ (𝜑 → 𝐹:ℝ⟶ℂ) |
fperiodmul.t | ⊢ (𝜑 → 𝑇 ∈ ℝ) |
fperiodmul.n | ⊢ (𝜑 → 𝑁 ∈ ℤ) |
fperiodmul.x | ⊢ (𝜑 → 𝑋 ∈ ℝ) |
fperiodmul.per | ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥)) |
Ref | Expression |
---|---|
fperiodmul | ⊢ (𝜑 → (𝐹‘(𝑋 + (𝑁 · 𝑇))) = (𝐹‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fperiodmul.f | . . . 4 ⊢ (𝜑 → 𝐹:ℝ⟶ℂ) | |
2 | 1 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ0) → 𝐹:ℝ⟶ℂ) |
3 | fperiodmul.t | . . . 4 ⊢ (𝜑 → 𝑇 ∈ ℝ) | |
4 | 3 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ0) → 𝑇 ∈ ℝ) |
5 | simpr 476 | . . 3 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0) | |
6 | fperiodmul.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ ℝ) | |
7 | 6 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ0) → 𝑋 ∈ ℝ) |
8 | fperiodmul.per | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥)) | |
9 | 8 | adantlr 751 | . . 3 ⊢ (((𝜑 ∧ 𝑁 ∈ ℕ0) ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥)) |
10 | 2, 4, 5, 7, 9 | fperiodmullem 39831 | . 2 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ0) → (𝐹‘(𝑋 + (𝑁 · 𝑇))) = (𝐹‘𝑋)) |
11 | 6 | recnd 10106 | . . . . . . 7 ⊢ (𝜑 → 𝑋 ∈ ℂ) |
12 | fperiodmul.n | . . . . . . . . 9 ⊢ (𝜑 → 𝑁 ∈ ℤ) | |
13 | 12 | zcnd 11521 | . . . . . . . 8 ⊢ (𝜑 → 𝑁 ∈ ℂ) |
14 | 3 | recnd 10106 | . . . . . . . 8 ⊢ (𝜑 → 𝑇 ∈ ℂ) |
15 | 13, 14 | mulcld 10098 | . . . . . . 7 ⊢ (𝜑 → (𝑁 · 𝑇) ∈ ℂ) |
16 | 11, 15 | subnegd 10437 | . . . . . 6 ⊢ (𝜑 → (𝑋 − -(𝑁 · 𝑇)) = (𝑋 + (𝑁 · 𝑇))) |
17 | 13, 14 | mulneg1d 10521 | . . . . . . . 8 ⊢ (𝜑 → (-𝑁 · 𝑇) = -(𝑁 · 𝑇)) |
18 | 17 | eqcomd 2657 | . . . . . . 7 ⊢ (𝜑 → -(𝑁 · 𝑇) = (-𝑁 · 𝑇)) |
19 | 18 | oveq2d 6706 | . . . . . 6 ⊢ (𝜑 → (𝑋 − -(𝑁 · 𝑇)) = (𝑋 − (-𝑁 · 𝑇))) |
20 | 16, 19 | eqtr3d 2687 | . . . . 5 ⊢ (𝜑 → (𝑋 + (𝑁 · 𝑇)) = (𝑋 − (-𝑁 · 𝑇))) |
21 | 20 | fveq2d 6233 | . . . 4 ⊢ (𝜑 → (𝐹‘(𝑋 + (𝑁 · 𝑇))) = (𝐹‘(𝑋 − (-𝑁 · 𝑇)))) |
22 | 21 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑁 ∈ ℕ0) → (𝐹‘(𝑋 + (𝑁 · 𝑇))) = (𝐹‘(𝑋 − (-𝑁 · 𝑇)))) |
23 | 1 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝑁 ∈ ℕ0) → 𝐹:ℝ⟶ℂ) |
24 | 3 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝑁 ∈ ℕ0) → 𝑇 ∈ ℝ) |
25 | znnn0nn 11527 | . . . . . 6 ⊢ ((𝑁 ∈ ℤ ∧ ¬ 𝑁 ∈ ℕ0) → -𝑁 ∈ ℕ) | |
26 | 12, 25 | sylan 487 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝑁 ∈ ℕ0) → -𝑁 ∈ ℕ) |
27 | 26 | nnnn0d 11389 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝑁 ∈ ℕ0) → -𝑁 ∈ ℕ0) |
28 | 6 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝑁 ∈ ℕ0) → 𝑋 ∈ ℝ) |
29 | 12 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ ¬ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℤ) |
30 | 29 | zred 11520 | . . . . . . 7 ⊢ ((𝜑 ∧ ¬ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℝ) |
31 | 30 | renegcld 10495 | . . . . . 6 ⊢ ((𝜑 ∧ ¬ 𝑁 ∈ ℕ0) → -𝑁 ∈ ℝ) |
32 | 31, 24 | remulcld 10108 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝑁 ∈ ℕ0) → (-𝑁 · 𝑇) ∈ ℝ) |
33 | 28, 32 | resubcld 10496 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝑁 ∈ ℕ0) → (𝑋 − (-𝑁 · 𝑇)) ∈ ℝ) |
34 | 8 | adantlr 751 | . . . 4 ⊢ (((𝜑 ∧ ¬ 𝑁 ∈ ℕ0) ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥)) |
35 | 23, 24, 27, 33, 34 | fperiodmullem 39831 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑁 ∈ ℕ0) → (𝐹‘((𝑋 − (-𝑁 · 𝑇)) + (-𝑁 · 𝑇))) = (𝐹‘(𝑋 − (-𝑁 · 𝑇)))) |
36 | 28 | recnd 10106 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝑁 ∈ ℕ0) → 𝑋 ∈ ℂ) |
37 | 30 | recnd 10106 | . . . . . . 7 ⊢ ((𝜑 ∧ ¬ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℂ) |
38 | 37 | negcld 10417 | . . . . . 6 ⊢ ((𝜑 ∧ ¬ 𝑁 ∈ ℕ0) → -𝑁 ∈ ℂ) |
39 | 24 | recnd 10106 | . . . . . 6 ⊢ ((𝜑 ∧ ¬ 𝑁 ∈ ℕ0) → 𝑇 ∈ ℂ) |
40 | 38, 39 | mulcld 10098 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝑁 ∈ ℕ0) → (-𝑁 · 𝑇) ∈ ℂ) |
41 | 36, 40 | npcand 10434 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝑁 ∈ ℕ0) → ((𝑋 − (-𝑁 · 𝑇)) + (-𝑁 · 𝑇)) = 𝑋) |
42 | 41 | fveq2d 6233 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑁 ∈ ℕ0) → (𝐹‘((𝑋 − (-𝑁 · 𝑇)) + (-𝑁 · 𝑇))) = (𝐹‘𝑋)) |
43 | 22, 35, 42 | 3eqtr2d 2691 | . 2 ⊢ ((𝜑 ∧ ¬ 𝑁 ∈ ℕ0) → (𝐹‘(𝑋 + (𝑁 · 𝑇))) = (𝐹‘𝑋)) |
44 | 10, 43 | pm2.61dan 849 | 1 ⊢ (𝜑 → (𝐹‘(𝑋 + (𝑁 · 𝑇))) = (𝐹‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 383 = wceq 1523 ∈ wcel 2030 ⟶wf 5922 ‘cfv 5926 (class class class)co 6690 ℂcc 9972 ℝcr 9973 + caddc 9977 · cmul 9979 − cmin 10304 -cneg 10305 ℕcn 11058 ℕ0cn0 11330 ℤcz 11415 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-er 7787 df-en 7998 df-dom 7999 df-sdom 8000 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-nn 11059 df-n0 11331 df-z 11416 |
This theorem is referenced by: fourierdlem89 40730 fourierdlem90 40731 fourierdlem91 40732 fourierdlem94 40735 fourierdlem97 40738 fourierdlem113 40754 |
Copyright terms: Public domain | W3C validator |