Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fperiodmul Structured version   Visualization version   GIF version

Theorem fperiodmul 41577
Description: A function with period T is also periodic with period multiple of T. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fperiodmul.f (𝜑𝐹:ℝ⟶ℂ)
fperiodmul.t (𝜑𝑇 ∈ ℝ)
fperiodmul.n (𝜑𝑁 ∈ ℤ)
fperiodmul.x (𝜑𝑋 ∈ ℝ)
fperiodmul.per ((𝜑𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
Assertion
Ref Expression
fperiodmul (𝜑 → (𝐹‘(𝑋 + (𝑁 · 𝑇))) = (𝐹𝑋))
Distinct variable groups:   𝑥,𝐹   𝑥,𝑁   𝑥,𝑇   𝑥,𝑋   𝜑,𝑥

Proof of Theorem fperiodmul
StepHypRef Expression
1 fperiodmul.f . . . 4 (𝜑𝐹:ℝ⟶ℂ)
21adantr 483 . . 3 ((𝜑𝑁 ∈ ℕ0) → 𝐹:ℝ⟶ℂ)
3 fperiodmul.t . . . 4 (𝜑𝑇 ∈ ℝ)
43adantr 483 . . 3 ((𝜑𝑁 ∈ ℕ0) → 𝑇 ∈ ℝ)
5 simpr 487 . . 3 ((𝜑𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0)
6 fperiodmul.x . . . 4 (𝜑𝑋 ∈ ℝ)
76adantr 483 . . 3 ((𝜑𝑁 ∈ ℕ0) → 𝑋 ∈ ℝ)
8 fperiodmul.per . . . 4 ((𝜑𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
98adantlr 713 . . 3 (((𝜑𝑁 ∈ ℕ0) ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
102, 4, 5, 7, 9fperiodmullem 41576 . 2 ((𝜑𝑁 ∈ ℕ0) → (𝐹‘(𝑋 + (𝑁 · 𝑇))) = (𝐹𝑋))
116recnd 10672 . . . . . . 7 (𝜑𝑋 ∈ ℂ)
12 fperiodmul.n . . . . . . . . 9 (𝜑𝑁 ∈ ℤ)
1312zcnd 12091 . . . . . . . 8 (𝜑𝑁 ∈ ℂ)
143recnd 10672 . . . . . . . 8 (𝜑𝑇 ∈ ℂ)
1513, 14mulcld 10664 . . . . . . 7 (𝜑 → (𝑁 · 𝑇) ∈ ℂ)
1611, 15subnegd 11007 . . . . . 6 (𝜑 → (𝑋 − -(𝑁 · 𝑇)) = (𝑋 + (𝑁 · 𝑇)))
1713, 14mulneg1d 11096 . . . . . . . 8 (𝜑 → (-𝑁 · 𝑇) = -(𝑁 · 𝑇))
1817eqcomd 2830 . . . . . . 7 (𝜑 → -(𝑁 · 𝑇) = (-𝑁 · 𝑇))
1918oveq2d 7175 . . . . . 6 (𝜑 → (𝑋 − -(𝑁 · 𝑇)) = (𝑋 − (-𝑁 · 𝑇)))
2016, 19eqtr3d 2861 . . . . 5 (𝜑 → (𝑋 + (𝑁 · 𝑇)) = (𝑋 − (-𝑁 · 𝑇)))
2120fveq2d 6677 . . . 4 (𝜑 → (𝐹‘(𝑋 + (𝑁 · 𝑇))) = (𝐹‘(𝑋 − (-𝑁 · 𝑇))))
2221adantr 483 . . 3 ((𝜑 ∧ ¬ 𝑁 ∈ ℕ0) → (𝐹‘(𝑋 + (𝑁 · 𝑇))) = (𝐹‘(𝑋 − (-𝑁 · 𝑇))))
231adantr 483 . . . 4 ((𝜑 ∧ ¬ 𝑁 ∈ ℕ0) → 𝐹:ℝ⟶ℂ)
243adantr 483 . . . 4 ((𝜑 ∧ ¬ 𝑁 ∈ ℕ0) → 𝑇 ∈ ℝ)
25 znnn0nn 12097 . . . . . 6 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 ∈ ℕ0) → -𝑁 ∈ ℕ)
2612, 25sylan 582 . . . . 5 ((𝜑 ∧ ¬ 𝑁 ∈ ℕ0) → -𝑁 ∈ ℕ)
2726nnnn0d 11958 . . . 4 ((𝜑 ∧ ¬ 𝑁 ∈ ℕ0) → -𝑁 ∈ ℕ0)
286adantr 483 . . . . 5 ((𝜑 ∧ ¬ 𝑁 ∈ ℕ0) → 𝑋 ∈ ℝ)
2912adantr 483 . . . . . . . 8 ((𝜑 ∧ ¬ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℤ)
3029zred 12090 . . . . . . 7 ((𝜑 ∧ ¬ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℝ)
3130renegcld 11070 . . . . . 6 ((𝜑 ∧ ¬ 𝑁 ∈ ℕ0) → -𝑁 ∈ ℝ)
3231, 24remulcld 10674 . . . . 5 ((𝜑 ∧ ¬ 𝑁 ∈ ℕ0) → (-𝑁 · 𝑇) ∈ ℝ)
3328, 32resubcld 11071 . . . 4 ((𝜑 ∧ ¬ 𝑁 ∈ ℕ0) → (𝑋 − (-𝑁 · 𝑇)) ∈ ℝ)
348adantlr 713 . . . 4 (((𝜑 ∧ ¬ 𝑁 ∈ ℕ0) ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
3523, 24, 27, 33, 34fperiodmullem 41576 . . 3 ((𝜑 ∧ ¬ 𝑁 ∈ ℕ0) → (𝐹‘((𝑋 − (-𝑁 · 𝑇)) + (-𝑁 · 𝑇))) = (𝐹‘(𝑋 − (-𝑁 · 𝑇))))
3628recnd 10672 . . . . 5 ((𝜑 ∧ ¬ 𝑁 ∈ ℕ0) → 𝑋 ∈ ℂ)
3730recnd 10672 . . . . . . 7 ((𝜑 ∧ ¬ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℂ)
3837negcld 10987 . . . . . 6 ((𝜑 ∧ ¬ 𝑁 ∈ ℕ0) → -𝑁 ∈ ℂ)
3924recnd 10672 . . . . . 6 ((𝜑 ∧ ¬ 𝑁 ∈ ℕ0) → 𝑇 ∈ ℂ)
4038, 39mulcld 10664 . . . . 5 ((𝜑 ∧ ¬ 𝑁 ∈ ℕ0) → (-𝑁 · 𝑇) ∈ ℂ)
4136, 40npcand 11004 . . . 4 ((𝜑 ∧ ¬ 𝑁 ∈ ℕ0) → ((𝑋 − (-𝑁 · 𝑇)) + (-𝑁 · 𝑇)) = 𝑋)
4241fveq2d 6677 . . 3 ((𝜑 ∧ ¬ 𝑁 ∈ ℕ0) → (𝐹‘((𝑋 − (-𝑁 · 𝑇)) + (-𝑁 · 𝑇))) = (𝐹𝑋))
4322, 35, 423eqtr2d 2865 . 2 ((𝜑 ∧ ¬ 𝑁 ∈ ℕ0) → (𝐹‘(𝑋 + (𝑁 · 𝑇))) = (𝐹𝑋))
4410, 43pm2.61dan 811 1 (𝜑 → (𝐹‘(𝑋 + (𝑁 · 𝑇))) = (𝐹𝑋))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398   = wceq 1536  wcel 2113  wf 6354  cfv 6358  (class class class)co 7159  cc 10538  cr 10539   + caddc 10543   · cmul 10545  cmin 10873  -cneg 10874  cn 11641  0cn0 11900  cz 11984
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-er 8292  df-en 8513  df-dom 8514  df-sdom 8515  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-nn 11642  df-n0 11901  df-z 11985
This theorem is referenced by:  fourierdlem89  42487  fourierdlem90  42488  fourierdlem91  42489  fourierdlem94  42492  fourierdlem97  42495  fourierdlem113  42511
  Copyright terms: Public domain W3C validator