Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fperiodmullem Structured version   Visualization version   GIF version

Theorem fperiodmullem 38981
Description: A function with period T is also periodic with period nonnegative multiple of T. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fperiodmullem.f (𝜑𝐹:ℝ⟶ℂ)
fperiodmullem.t (𝜑𝑇 ∈ ℝ)
fperiodmullem.n (𝜑𝑁 ∈ ℕ0)
fperiodmullem.x (𝜑𝑋 ∈ ℝ)
fperiodmullem.per ((𝜑𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
Assertion
Ref Expression
fperiodmullem (𝜑 → (𝐹‘(𝑋 + (𝑁 · 𝑇))) = (𝐹𝑋))
Distinct variable groups:   𝑥,𝐹   𝑥,𝑇   𝑥,𝑋   𝜑,𝑥
Allowed substitution hint:   𝑁(𝑥)

Proof of Theorem fperiodmullem
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fperiodmullem.n . 2 (𝜑𝑁 ∈ ℕ0)
2 oveq1 6611 . . . . . . 7 (𝑛 = 0 → (𝑛 · 𝑇) = (0 · 𝑇))
32oveq2d 6620 . . . . . 6 (𝑛 = 0 → (𝑋 + (𝑛 · 𝑇)) = (𝑋 + (0 · 𝑇)))
43fveq2d 6152 . . . . 5 (𝑛 = 0 → (𝐹‘(𝑋 + (𝑛 · 𝑇))) = (𝐹‘(𝑋 + (0 · 𝑇))))
54eqeq1d 2623 . . . 4 (𝑛 = 0 → ((𝐹‘(𝑋 + (𝑛 · 𝑇))) = (𝐹𝑋) ↔ (𝐹‘(𝑋 + (0 · 𝑇))) = (𝐹𝑋)))
65imbi2d 330 . . 3 (𝑛 = 0 → ((𝜑 → (𝐹‘(𝑋 + (𝑛 · 𝑇))) = (𝐹𝑋)) ↔ (𝜑 → (𝐹‘(𝑋 + (0 · 𝑇))) = (𝐹𝑋))))
7 oveq1 6611 . . . . . . 7 (𝑛 = 𝑚 → (𝑛 · 𝑇) = (𝑚 · 𝑇))
87oveq2d 6620 . . . . . 6 (𝑛 = 𝑚 → (𝑋 + (𝑛 · 𝑇)) = (𝑋 + (𝑚 · 𝑇)))
98fveq2d 6152 . . . . 5 (𝑛 = 𝑚 → (𝐹‘(𝑋 + (𝑛 · 𝑇))) = (𝐹‘(𝑋 + (𝑚 · 𝑇))))
109eqeq1d 2623 . . . 4 (𝑛 = 𝑚 → ((𝐹‘(𝑋 + (𝑛 · 𝑇))) = (𝐹𝑋) ↔ (𝐹‘(𝑋 + (𝑚 · 𝑇))) = (𝐹𝑋)))
1110imbi2d 330 . . 3 (𝑛 = 𝑚 → ((𝜑 → (𝐹‘(𝑋 + (𝑛 · 𝑇))) = (𝐹𝑋)) ↔ (𝜑 → (𝐹‘(𝑋 + (𝑚 · 𝑇))) = (𝐹𝑋))))
12 oveq1 6611 . . . . . . 7 (𝑛 = (𝑚 + 1) → (𝑛 · 𝑇) = ((𝑚 + 1) · 𝑇))
1312oveq2d 6620 . . . . . 6 (𝑛 = (𝑚 + 1) → (𝑋 + (𝑛 · 𝑇)) = (𝑋 + ((𝑚 + 1) · 𝑇)))
1413fveq2d 6152 . . . . 5 (𝑛 = (𝑚 + 1) → (𝐹‘(𝑋 + (𝑛 · 𝑇))) = (𝐹‘(𝑋 + ((𝑚 + 1) · 𝑇))))
1514eqeq1d 2623 . . . 4 (𝑛 = (𝑚 + 1) → ((𝐹‘(𝑋 + (𝑛 · 𝑇))) = (𝐹𝑋) ↔ (𝐹‘(𝑋 + ((𝑚 + 1) · 𝑇))) = (𝐹𝑋)))
1615imbi2d 330 . . 3 (𝑛 = (𝑚 + 1) → ((𝜑 → (𝐹‘(𝑋 + (𝑛 · 𝑇))) = (𝐹𝑋)) ↔ (𝜑 → (𝐹‘(𝑋 + ((𝑚 + 1) · 𝑇))) = (𝐹𝑋))))
17 oveq1 6611 . . . . . . 7 (𝑛 = 𝑁 → (𝑛 · 𝑇) = (𝑁 · 𝑇))
1817oveq2d 6620 . . . . . 6 (𝑛 = 𝑁 → (𝑋 + (𝑛 · 𝑇)) = (𝑋 + (𝑁 · 𝑇)))
1918fveq2d 6152 . . . . 5 (𝑛 = 𝑁 → (𝐹‘(𝑋 + (𝑛 · 𝑇))) = (𝐹‘(𝑋 + (𝑁 · 𝑇))))
2019eqeq1d 2623 . . . 4 (𝑛 = 𝑁 → ((𝐹‘(𝑋 + (𝑛 · 𝑇))) = (𝐹𝑋) ↔ (𝐹‘(𝑋 + (𝑁 · 𝑇))) = (𝐹𝑋)))
2120imbi2d 330 . . 3 (𝑛 = 𝑁 → ((𝜑 → (𝐹‘(𝑋 + (𝑛 · 𝑇))) = (𝐹𝑋)) ↔ (𝜑 → (𝐹‘(𝑋 + (𝑁 · 𝑇))) = (𝐹𝑋))))
22 fperiodmullem.t . . . . . . . 8 (𝜑𝑇 ∈ ℝ)
2322recnd 10012 . . . . . . 7 (𝜑𝑇 ∈ ℂ)
2423mul02d 10178 . . . . . 6 (𝜑 → (0 · 𝑇) = 0)
2524oveq2d 6620 . . . . 5 (𝜑 → (𝑋 + (0 · 𝑇)) = (𝑋 + 0))
26 fperiodmullem.x . . . . . . 7 (𝜑𝑋 ∈ ℝ)
2726recnd 10012 . . . . . 6 (𝜑𝑋 ∈ ℂ)
2827addid1d 10180 . . . . 5 (𝜑 → (𝑋 + 0) = 𝑋)
2925, 28eqtrd 2655 . . . 4 (𝜑 → (𝑋 + (0 · 𝑇)) = 𝑋)
3029fveq2d 6152 . . 3 (𝜑 → (𝐹‘(𝑋 + (0 · 𝑇))) = (𝐹𝑋))
31 simp3 1061 . . . . 5 ((𝑚 ∈ ℕ0 ∧ (𝜑 → (𝐹‘(𝑋 + (𝑚 · 𝑇))) = (𝐹𝑋)) ∧ 𝜑) → 𝜑)
32 simp1 1059 . . . . 5 ((𝑚 ∈ ℕ0 ∧ (𝜑 → (𝐹‘(𝑋 + (𝑚 · 𝑇))) = (𝐹𝑋)) ∧ 𝜑) → 𝑚 ∈ ℕ0)
33 simpr 477 . . . . . . 7 (((𝜑 → (𝐹‘(𝑋 + (𝑚 · 𝑇))) = (𝐹𝑋)) ∧ 𝜑) → 𝜑)
34 simpl 473 . . . . . . 7 (((𝜑 → (𝐹‘(𝑋 + (𝑚 · 𝑇))) = (𝐹𝑋)) ∧ 𝜑) → (𝜑 → (𝐹‘(𝑋 + (𝑚 · 𝑇))) = (𝐹𝑋)))
3533, 34mpd 15 . . . . . 6 (((𝜑 → (𝐹‘(𝑋 + (𝑚 · 𝑇))) = (𝐹𝑋)) ∧ 𝜑) → (𝐹‘(𝑋 + (𝑚 · 𝑇))) = (𝐹𝑋))
36353adant1 1077 . . . . 5 ((𝑚 ∈ ℕ0 ∧ (𝜑 → (𝐹‘(𝑋 + (𝑚 · 𝑇))) = (𝐹𝑋)) ∧ 𝜑) → (𝐹‘(𝑋 + (𝑚 · 𝑇))) = (𝐹𝑋))
37 nn0cn 11246 . . . . . . . . . . . 12 (𝑚 ∈ ℕ0𝑚 ∈ ℂ)
3837adantl 482 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ0) → 𝑚 ∈ ℂ)
39 1cnd 10000 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ0) → 1 ∈ ℂ)
4023adantr 481 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ0) → 𝑇 ∈ ℂ)
4138, 39, 40adddird 10009 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ0) → ((𝑚 + 1) · 𝑇) = ((𝑚 · 𝑇) + (1 · 𝑇)))
4241oveq2d 6620 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ0) → (𝑋 + ((𝑚 + 1) · 𝑇)) = (𝑋 + ((𝑚 · 𝑇) + (1 · 𝑇))))
4327adantr 481 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ0) → 𝑋 ∈ ℂ)
4438, 40mulcld 10004 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ0) → (𝑚 · 𝑇) ∈ ℂ)
4539, 40mulcld 10004 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ0) → (1 · 𝑇) ∈ ℂ)
4643, 44, 45addassd 10006 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ0) → ((𝑋 + (𝑚 · 𝑇)) + (1 · 𝑇)) = (𝑋 + ((𝑚 · 𝑇) + (1 · 𝑇))))
4740mulid2d 10002 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ0) → (1 · 𝑇) = 𝑇)
4847oveq2d 6620 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ0) → ((𝑋 + (𝑚 · 𝑇)) + (1 · 𝑇)) = ((𝑋 + (𝑚 · 𝑇)) + 𝑇))
4942, 46, 483eqtr2d 2661 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ0) → (𝑋 + ((𝑚 + 1) · 𝑇)) = ((𝑋 + (𝑚 · 𝑇)) + 𝑇))
5049fveq2d 6152 . . . . . . 7 ((𝜑𝑚 ∈ ℕ0) → (𝐹‘(𝑋 + ((𝑚 + 1) · 𝑇))) = (𝐹‘((𝑋 + (𝑚 · 𝑇)) + 𝑇)))
51503adant3 1079 . . . . . 6 ((𝜑𝑚 ∈ ℕ0 ∧ (𝐹‘(𝑋 + (𝑚 · 𝑇))) = (𝐹𝑋)) → (𝐹‘(𝑋 + ((𝑚 + 1) · 𝑇))) = (𝐹‘((𝑋 + (𝑚 · 𝑇)) + 𝑇)))
5226adantr 481 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ0) → 𝑋 ∈ ℝ)
53 nn0re 11245 . . . . . . . . . . 11 (𝑚 ∈ ℕ0𝑚 ∈ ℝ)
5453adantl 482 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ0) → 𝑚 ∈ ℝ)
5522adantr 481 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ0) → 𝑇 ∈ ℝ)
5654, 55remulcld 10014 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ0) → (𝑚 · 𝑇) ∈ ℝ)
5752, 56readdcld 10013 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ0) → (𝑋 + (𝑚 · 𝑇)) ∈ ℝ)
5857ex 450 . . . . . . . . 9 (𝜑 → (𝑚 ∈ ℕ0 → (𝑋 + (𝑚 · 𝑇)) ∈ ℝ))
5958imdistani 725 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ0) → (𝜑 ∧ (𝑋 + (𝑚 · 𝑇)) ∈ ℝ))
60 eleq1 2686 . . . . . . . . . . 11 (𝑥 = (𝑋 + (𝑚 · 𝑇)) → (𝑥 ∈ ℝ ↔ (𝑋 + (𝑚 · 𝑇)) ∈ ℝ))
6160anbi2d 739 . . . . . . . . . 10 (𝑥 = (𝑋 + (𝑚 · 𝑇)) → ((𝜑𝑥 ∈ ℝ) ↔ (𝜑 ∧ (𝑋 + (𝑚 · 𝑇)) ∈ ℝ)))
62 oveq1 6611 . . . . . . . . . . . 12 (𝑥 = (𝑋 + (𝑚 · 𝑇)) → (𝑥 + 𝑇) = ((𝑋 + (𝑚 · 𝑇)) + 𝑇))
6362fveq2d 6152 . . . . . . . . . . 11 (𝑥 = (𝑋 + (𝑚 · 𝑇)) → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘((𝑋 + (𝑚 · 𝑇)) + 𝑇)))
64 fveq2 6148 . . . . . . . . . . 11 (𝑥 = (𝑋 + (𝑚 · 𝑇)) → (𝐹𝑥) = (𝐹‘(𝑋 + (𝑚 · 𝑇))))
6563, 64eqeq12d 2636 . . . . . . . . . 10 (𝑥 = (𝑋 + (𝑚 · 𝑇)) → ((𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥) ↔ (𝐹‘((𝑋 + (𝑚 · 𝑇)) + 𝑇)) = (𝐹‘(𝑋 + (𝑚 · 𝑇)))))
6661, 65imbi12d 334 . . . . . . . . 9 (𝑥 = (𝑋 + (𝑚 · 𝑇)) → (((𝜑𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥)) ↔ ((𝜑 ∧ (𝑋 + (𝑚 · 𝑇)) ∈ ℝ) → (𝐹‘((𝑋 + (𝑚 · 𝑇)) + 𝑇)) = (𝐹‘(𝑋 + (𝑚 · 𝑇))))))
67 fperiodmullem.per . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
6866, 67vtoclg 3252 . . . . . . . 8 ((𝑋 + (𝑚 · 𝑇)) ∈ ℝ → ((𝜑 ∧ (𝑋 + (𝑚 · 𝑇)) ∈ ℝ) → (𝐹‘((𝑋 + (𝑚 · 𝑇)) + 𝑇)) = (𝐹‘(𝑋 + (𝑚 · 𝑇)))))
6957, 59, 68sylc 65 . . . . . . 7 ((𝜑𝑚 ∈ ℕ0) → (𝐹‘((𝑋 + (𝑚 · 𝑇)) + 𝑇)) = (𝐹‘(𝑋 + (𝑚 · 𝑇))))
70693adant3 1079 . . . . . 6 ((𝜑𝑚 ∈ ℕ0 ∧ (𝐹‘(𝑋 + (𝑚 · 𝑇))) = (𝐹𝑋)) → (𝐹‘((𝑋 + (𝑚 · 𝑇)) + 𝑇)) = (𝐹‘(𝑋 + (𝑚 · 𝑇))))
71 simp3 1061 . . . . . 6 ((𝜑𝑚 ∈ ℕ0 ∧ (𝐹‘(𝑋 + (𝑚 · 𝑇))) = (𝐹𝑋)) → (𝐹‘(𝑋 + (𝑚 · 𝑇))) = (𝐹𝑋))
7251, 70, 713eqtrd 2659 . . . . 5 ((𝜑𝑚 ∈ ℕ0 ∧ (𝐹‘(𝑋 + (𝑚 · 𝑇))) = (𝐹𝑋)) → (𝐹‘(𝑋 + ((𝑚 + 1) · 𝑇))) = (𝐹𝑋))
7331, 32, 36, 72syl3anc 1323 . . . 4 ((𝑚 ∈ ℕ0 ∧ (𝜑 → (𝐹‘(𝑋 + (𝑚 · 𝑇))) = (𝐹𝑋)) ∧ 𝜑) → (𝐹‘(𝑋 + ((𝑚 + 1) · 𝑇))) = (𝐹𝑋))
74733exp 1261 . . 3 (𝑚 ∈ ℕ0 → ((𝜑 → (𝐹‘(𝑋 + (𝑚 · 𝑇))) = (𝐹𝑋)) → (𝜑 → (𝐹‘(𝑋 + ((𝑚 + 1) · 𝑇))) = (𝐹𝑋))))
756, 11, 16, 21, 30, 74nn0ind 11416 . 2 (𝑁 ∈ ℕ0 → (𝜑 → (𝐹‘(𝑋 + (𝑁 · 𝑇))) = (𝐹𝑋)))
761, 75mpcom 38 1 (𝜑 → (𝐹‘(𝑋 + (𝑁 · 𝑇))) = (𝐹𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1036   = wceq 1480  wcel 1987  wf 5843  cfv 5847  (class class class)co 6604  cc 9878  cr 9879  0cc0 9880  1c1 9881   + caddc 9883   · cmul 9885  0cn0 11236
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-nn 10965  df-n0 11237  df-z 11322
This theorem is referenced by:  fperiodmul  38982
  Copyright terms: Public domain W3C validator