Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fprodaddrecnncnvlem Structured version   Visualization version   GIF version

 Description: The sequence 𝑆 of finite products, where every factor is added an "always smaller" amount, converges to the finite product of the factors. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
fprodaddrecnncnvlem.b ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
fprodaddrecnncnvlem.s 𝑆 = (𝑛 ∈ ℕ ↦ ∏𝑘𝐴 (𝐵 + (1 / 𝑛)))
fprodaddrecnncnvlem.f 𝐹 = (𝑥 ∈ ℂ ↦ ∏𝑘𝐴 (𝐵 + 𝑥))
fprodaddrecnncnvlem.g 𝐺 = (𝑛 ∈ ℕ ↦ (1 / 𝑛))
Assertion
Ref Expression
Distinct variable groups:   𝐴,𝑘,𝑥   𝑥,𝐵   𝑛,𝐹   𝑛,𝐺   𝑘,𝑛,𝑥   𝜑,𝑛,𝑥
Allowed substitution hints:   𝜑(𝑘)   𝐴(𝑛)   𝐵(𝑘,𝑛)   𝑆(𝑥,𝑘,𝑛)   𝐹(𝑥,𝑘)   𝐺(𝑥,𝑘)

StepHypRef Expression
1 nnuz 11667 . . 3 ℕ = (ℤ‘1)
2 1zzd 11352 . . 3 (𝜑 → 1 ∈ ℤ)
3 fprodaddrecnncnvlem.k . . . 4 𝑘𝜑
4 fprodaddrecnncnvlem.a . . . 4 (𝜑𝐴 ∈ Fin)
5 fprodaddrecnncnvlem.b . . . 4 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
6 fprodaddrecnncnvlem.f . . . 4 𝐹 = (𝑥 ∈ ℂ ↦ ∏𝑘𝐴 (𝐵 + 𝑥))
73, 4, 5, 6fprodadd2cncf 39424 . . 3 (𝜑𝐹 ∈ (ℂ–cn→ℂ))
8 1rp 11780 . . . . . . . 8 1 ∈ ℝ+
98a1i 11 . . . . . . 7 (𝑛 ∈ ℕ → 1 ∈ ℝ+)
10 nnrp 11786 . . . . . . 7 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ+)
119, 10rpdivcld 11833 . . . . . 6 (𝑛 ∈ ℕ → (1 / 𝑛) ∈ ℝ+)
1211rpcnd 11818 . . . . 5 (𝑛 ∈ ℕ → (1 / 𝑛) ∈ ℂ)
1312adantl 482 . . . 4 ((𝜑𝑛 ∈ ℕ) → (1 / 𝑛) ∈ ℂ)
14 fprodaddrecnncnvlem.g . . . 4 𝐺 = (𝑛 ∈ ℕ ↦ (1 / 𝑛))
1513, 14fmptd 6340 . . 3 (𝜑𝐺:ℕ⟶ℂ)
16 1cnd 10000 . . . . 5 (𝜑 → 1 ∈ ℂ)
17 divcnv 14510 . . . . 5 (1 ∈ ℂ → (𝑛 ∈ ℕ ↦ (1 / 𝑛)) ⇝ 0)
1816, 17syl 17 . . . 4 (𝜑 → (𝑛 ∈ ℕ ↦ (1 / 𝑛)) ⇝ 0)
1914a1i 11 . . . . 5 (𝜑𝐺 = (𝑛 ∈ ℕ ↦ (1 / 𝑛)))
2019breq1d 4623 . . . 4 (𝜑 → (𝐺 ⇝ 0 ↔ (𝑛 ∈ ℕ ↦ (1 / 𝑛)) ⇝ 0))
2118, 20mpbird 247 . . 3 (𝜑𝐺 ⇝ 0)
22 0cnd 9977 . . 3 (𝜑 → 0 ∈ ℂ)
231, 2, 7, 15, 21, 22climcncf 22611 . 2 (𝜑 → (𝐹𝐺) ⇝ (𝐹‘0))
24 nfv 1840 . . . . . . . 8 𝑘 𝑥 ∈ ℂ
253, 24nfan 1825 . . . . . . 7 𝑘(𝜑𝑥 ∈ ℂ)
264adantr 481 . . . . . . 7 ((𝜑𝑥 ∈ ℂ) → 𝐴 ∈ Fin)
275adantlr 750 . . . . . . . 8 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘𝐴) → 𝐵 ∈ ℂ)
28 simplr 791 . . . . . . . 8 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘𝐴) → 𝑥 ∈ ℂ)
2927, 28addcld 10003 . . . . . . 7 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘𝐴) → (𝐵 + 𝑥) ∈ ℂ)
3025, 26, 29fprodclf 14648 . . . . . 6 ((𝜑𝑥 ∈ ℂ) → ∏𝑘𝐴 (𝐵 + 𝑥) ∈ ℂ)
3130, 6fmptd 6340 . . . . 5 (𝜑𝐹:ℂ⟶ℂ)
32 fcompt 6354 . . . . 5 ((𝐹:ℂ⟶ℂ ∧ 𝐺:ℕ⟶ℂ) → (𝐹𝐺) = (𝑛 ∈ ℕ ↦ (𝐹‘(𝐺𝑛))))
3331, 15, 32syl2anc 692 . . . 4 (𝜑 → (𝐹𝐺) = (𝑛 ∈ ℕ ↦ (𝐹‘(𝐺𝑛))))
34 fprodaddrecnncnvlem.s . . . . . 6 𝑆 = (𝑛 ∈ ℕ ↦ ∏𝑘𝐴 (𝐵 + (1 / 𝑛)))
3534a1i 11 . . . . 5 (𝜑𝑆 = (𝑛 ∈ ℕ ↦ ∏𝑘𝐴 (𝐵 + (1 / 𝑛))))
36 id 22 . . . . . . . . . 10 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ)
3714fvmpt2 6248 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ (1 / 𝑛) ∈ ℂ) → (𝐺𝑛) = (1 / 𝑛))
3836, 12, 37syl2anc 692 . . . . . . . . 9 (𝑛 ∈ ℕ → (𝐺𝑛) = (1 / 𝑛))
3938fveq2d 6152 . . . . . . . 8 (𝑛 ∈ ℕ → (𝐹‘(𝐺𝑛)) = (𝐹‘(1 / 𝑛)))
4039adantl 482 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝐹‘(𝐺𝑛)) = (𝐹‘(1 / 𝑛)))
416a1i 11 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → 𝐹 = (𝑥 ∈ ℂ ↦ ∏𝑘𝐴 (𝐵 + 𝑥)))
42 oveq2 6612 . . . . . . . . . 10 (𝑥 = (1 / 𝑛) → (𝐵 + 𝑥) = (𝐵 + (1 / 𝑛)))
4342prodeq2ad 39228 . . . . . . . . 9 (𝑥 = (1 / 𝑛) → ∏𝑘𝐴 (𝐵 + 𝑥) = ∏𝑘𝐴 (𝐵 + (1 / 𝑛)))
4443adantl 482 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥 = (1 / 𝑛)) → ∏𝑘𝐴 (𝐵 + 𝑥) = ∏𝑘𝐴 (𝐵 + (1 / 𝑛)))
45 prodex 14562 . . . . . . . . 9 𝑘𝐴 (𝐵 + (1 / 𝑛)) ∈ V
4645a1i 11 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → ∏𝑘𝐴 (𝐵 + (1 / 𝑛)) ∈ V)
4741, 44, 13, 46fvmptd 6245 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝐹‘(1 / 𝑛)) = ∏𝑘𝐴 (𝐵 + (1 / 𝑛)))
4840, 47eqtr2d 2656 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → ∏𝑘𝐴 (𝐵 + (1 / 𝑛)) = (𝐹‘(𝐺𝑛)))
4948mpteq2dva 4704 . . . . 5 (𝜑 → (𝑛 ∈ ℕ ↦ ∏𝑘𝐴 (𝐵 + (1 / 𝑛))) = (𝑛 ∈ ℕ ↦ (𝐹‘(𝐺𝑛))))
5035, 49eqtrd 2655 . . . 4 (𝜑𝑆 = (𝑛 ∈ ℕ ↦ (𝐹‘(𝐺𝑛))))
5133, 50eqtr4d 2658 . . 3 (𝜑 → (𝐹𝐺) = 𝑆)
526a1i 11 . . . 4 (𝜑𝐹 = (𝑥 ∈ ℂ ↦ ∏𝑘𝐴 (𝐵 + 𝑥)))
53 nfv 1840 . . . . . . 7 𝑘 𝑥 = 0
543, 53nfan 1825 . . . . . 6 𝑘(𝜑𝑥 = 0)
55 oveq2 6612 . . . . . . . . 9 (𝑥 = 0 → (𝐵 + 𝑥) = (𝐵 + 0))
5655ad2antlr 762 . . . . . . . 8 (((𝜑𝑥 = 0) ∧ 𝑘𝐴) → (𝐵 + 𝑥) = (𝐵 + 0))
575addid1d 10180 . . . . . . . . 9 ((𝜑𝑘𝐴) → (𝐵 + 0) = 𝐵)
5857adantlr 750 . . . . . . . 8 (((𝜑𝑥 = 0) ∧ 𝑘𝐴) → (𝐵 + 0) = 𝐵)
5956, 58eqtrd 2655 . . . . . . 7 (((𝜑𝑥 = 0) ∧ 𝑘𝐴) → (𝐵 + 𝑥) = 𝐵)
6059ex 450 . . . . . 6 ((𝜑𝑥 = 0) → (𝑘𝐴 → (𝐵 + 𝑥) = 𝐵))
6154, 60ralrimi 2951 . . . . 5 ((𝜑𝑥 = 0) → ∀𝑘𝐴 (𝐵 + 𝑥) = 𝐵)
6261prodeq2d 14577 . . . 4 ((𝜑𝑥 = 0) → ∏𝑘𝐴 (𝐵 + 𝑥) = ∏𝑘𝐴 𝐵)
63 prodex 14562 . . . . 5 𝑘𝐴 𝐵 ∈ V
6463a1i 11 . . . 4 (𝜑 → ∏𝑘𝐴 𝐵 ∈ V)
6552, 62, 22, 64fvmptd 6245 . . 3 (𝜑 → (𝐹‘0) = ∏𝑘𝐴 𝐵)
6651, 65breq12d 4626 . 2 (𝜑 → ((𝐹𝐺) ⇝ (𝐹‘0) ↔ 𝑆 ⇝ ∏𝑘𝐴 𝐵))
6723, 66mpbid 222 1 (𝜑𝑆 ⇝ ∏𝑘𝐴 𝐵)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 384   = wceq 1480  Ⅎwnf 1705   ∈ wcel 1987  Vcvv 3186   class class class wbr 4613   ↦ cmpt 4673   ∘ ccom 5078  ⟶wf 5843  ‘cfv 5847  (class class class)co 6604  Fincfn 7899  ℂcc 9878  0cc0 9880  1c1 9881   + caddc 9883   / cdiv 10628  ℕcn 10964  ℝ+crp 11776   ⇝ cli 14149  ∏cprod 14560 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-inf2 8482  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958  ax-addf 9959  ax-mulf 9960 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-iin 4488  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-se 5034  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-isom 5856  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-of 6850  df-om 7013  df-1st 7113  df-2nd 7114  df-supp 7241  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-2o 7506  df-oadd 7509  df-er 7687  df-map 7804  df-pm 7805  df-ixp 7853  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-fsupp 8220  df-fi 8261  df-sup 8292  df-inf 8293  df-oi 8359  df-card 8709  df-cda 8934  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-3 11024  df-4 11025  df-5 11026  df-6 11027  df-7 11028  df-8 11029  df-9 11030  df-n0 11237  df-z 11322  df-dec 11438  df-uz 11632  df-q 11733  df-rp 11777  df-xneg 11890  df-xadd 11891  df-xmul 11892  df-icc 12124  df-fz 12269  df-fzo 12407  df-fl 12533  df-seq 12742  df-exp 12801  df-hash 13058  df-cj 13773  df-re 13774  df-im 13775  df-sqrt 13909  df-abs 13910  df-clim 14153  df-rlim 14154  df-prod 14561  df-struct 15783  df-ndx 15784  df-slot 15785  df-base 15786  df-sets 15787  df-ress 15788  df-plusg 15875  df-mulr 15876  df-starv 15877  df-sca 15878  df-vsca 15879  df-ip 15880  df-tset 15881  df-ple 15882  df-ds 15885  df-unif 15886  df-hom 15887  df-cco 15888  df-rest 16004  df-topn 16005  df-0g 16023  df-gsum 16024  df-topgen 16025  df-pt 16026  df-prds 16029  df-xrs 16083  df-qtop 16088  df-imas 16089  df-xps 16091  df-mre 16167  df-mrc 16168  df-acs 16170  df-mgm 17163  df-sgrp 17205  df-mnd 17216  df-submnd 17257  df-mulg 17462  df-cntz 17671  df-cmn 18116  df-psmet 19657  df-xmet 19658  df-met 19659  df-bl 19660  df-mopn 19661  df-cnfld 19666  df-top 20621  df-bases 20622  df-topon 20623  df-topsp 20624  df-cn 20941  df-cnp 20942  df-tx 21275  df-hmeo 21468  df-xms 22035  df-ms 22036  df-tms 22037  df-cncf 22589 This theorem is referenced by:  fprodaddrecnncnv  39428
 Copyright terms: Public domain W3C validator