MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fprodconst Structured version   Visualization version   GIF version

Theorem fprodconst 15334
Description: The product of constant terms (𝑘 is not free in 𝐵.) (Contributed by Scott Fenton, 12-Jan-2018.)
Assertion
Ref Expression
fprodconst ((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) → ∏𝑘𝐴 𝐵 = (𝐵↑(♯‘𝐴)))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘

Proof of Theorem fprodconst
Dummy variables 𝑓 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 exp0 13436 . . . . 5 (𝐵 ∈ ℂ → (𝐵↑0) = 1)
21eqcomd 2829 . . . 4 (𝐵 ∈ ℂ → 1 = (𝐵↑0))
3 prodeq1 15265 . . . . . 6 (𝐴 = ∅ → ∏𝑘𝐴 𝐵 = ∏𝑘 ∈ ∅ 𝐵)
4 prod0 15299 . . . . . 6 𝑘 ∈ ∅ 𝐵 = 1
53, 4syl6eq 2874 . . . . 5 (𝐴 = ∅ → ∏𝑘𝐴 𝐵 = 1)
6 fveq2 6672 . . . . . . 7 (𝐴 = ∅ → (♯‘𝐴) = (♯‘∅))
7 hash0 13731 . . . . . . 7 (♯‘∅) = 0
86, 7syl6eq 2874 . . . . . 6 (𝐴 = ∅ → (♯‘𝐴) = 0)
98oveq2d 7174 . . . . 5 (𝐴 = ∅ → (𝐵↑(♯‘𝐴)) = (𝐵↑0))
105, 9eqeq12d 2839 . . . 4 (𝐴 = ∅ → (∏𝑘𝐴 𝐵 = (𝐵↑(♯‘𝐴)) ↔ 1 = (𝐵↑0)))
112, 10syl5ibrcom 249 . . 3 (𝐵 ∈ ℂ → (𝐴 = ∅ → ∏𝑘𝐴 𝐵 = (𝐵↑(♯‘𝐴))))
1211adantl 484 . 2 ((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) → (𝐴 = ∅ → ∏𝑘𝐴 𝐵 = (𝐵↑(♯‘𝐴))))
13 eqidd 2824 . . . . . . 7 (𝑘 = (𝑓𝑛) → 𝐵 = 𝐵)
14 simprl 769 . . . . . . 7 (((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (♯‘𝐴) ∈ ℕ)
15 simprr 771 . . . . . . 7 (((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)
16 simpllr 774 . . . . . . 7 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑘𝐴) → 𝐵 ∈ ℂ)
17 simpllr 774 . . . . . . . 8 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → 𝐵 ∈ ℂ)
18 elfznn 12939 . . . . . . . . 9 (𝑛 ∈ (1...(♯‘𝐴)) → 𝑛 ∈ ℕ)
1918adantl 484 . . . . . . . 8 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → 𝑛 ∈ ℕ)
20 fvconst2g 6966 . . . . . . . 8 ((𝐵 ∈ ℂ ∧ 𝑛 ∈ ℕ) → ((ℕ × {𝐵})‘𝑛) = 𝐵)
2117, 19, 20syl2anc 586 . . . . . . 7 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → ((ℕ × {𝐵})‘𝑛) = 𝐵)
2213, 14, 15, 16, 21fprod 15297 . . . . . 6 (((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → ∏𝑘𝐴 𝐵 = (seq1( · , (ℕ × {𝐵}))‘(♯‘𝐴)))
23 expnnval 13435 . . . . . . 7 ((𝐵 ∈ ℂ ∧ (♯‘𝐴) ∈ ℕ) → (𝐵↑(♯‘𝐴)) = (seq1( · , (ℕ × {𝐵}))‘(♯‘𝐴)))
2423ad2ant2lr 746 . . . . . 6 (((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (𝐵↑(♯‘𝐴)) = (seq1( · , (ℕ × {𝐵}))‘(♯‘𝐴)))
2522, 24eqtr4d 2861 . . . . 5 (((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → ∏𝑘𝐴 𝐵 = (𝐵↑(♯‘𝐴)))
2625expr 459 . . . 4 (((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ (♯‘𝐴) ∈ ℕ) → (𝑓:(1...(♯‘𝐴))–1-1-onto𝐴 → ∏𝑘𝐴 𝐵 = (𝐵↑(♯‘𝐴))))
2726exlimdv 1934 . . 3 (((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ (♯‘𝐴) ∈ ℕ) → (∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴 → ∏𝑘𝐴 𝐵 = (𝐵↑(♯‘𝐴))))
2827expimpd 456 . 2 ((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) → (((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → ∏𝑘𝐴 𝐵 = (𝐵↑(♯‘𝐴))))
29 fz1f1o 15069 . . 3 (𝐴 ∈ Fin → (𝐴 = ∅ ∨ ((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)))
3029adantr 483 . 2 ((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) → (𝐴 = ∅ ∨ ((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)))
3112, 28, 30mpjaod 856 1 ((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) → ∏𝑘𝐴 𝐵 = (𝐵↑(♯‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  wo 843   = wceq 1537  wex 1780  wcel 2114  c0 4293  {csn 4569   × cxp 5555  1-1-ontowf1o 6356  cfv 6357  (class class class)co 7158  Fincfn 8511  cc 10537  0cc0 10539  1c1 10540   · cmul 10544  cn 11640  ...cfz 12895  seqcseq 13372  cexp 13432  chash 13693  cprod 15261
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-inf2 9106  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-sup 8908  df-oi 8976  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-n0 11901  df-z 11985  df-uz 12247  df-rp 12393  df-fz 12896  df-fzo 13037  df-seq 13373  df-exp 13433  df-hash 13694  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-clim 14847  df-prod 15262
This theorem is referenced by:  risefallfac  15380  gausslemma2dlem5  25949  gausslemma2dlem6  25950  breprexpnat  31907  circlemethnat  31914  circlevma  31915  circlemethhgt  31916  bcprod  32972  etransclem23  42549  hoicvrrex  42845  ovnhoilem1  42890  vonsn  42980
  Copyright terms: Public domain W3C validator