MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fprodconst Structured version   Visualization version   GIF version

Theorem fprodconst 14633
Description: The product of constant terms (𝑘 is not free in 𝐵.) (Contributed by Scott Fenton, 12-Jan-2018.)
Assertion
Ref Expression
fprodconst ((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) → ∏𝑘𝐴 𝐵 = (𝐵↑(#‘𝐴)))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘

Proof of Theorem fprodconst
Dummy variables 𝑓 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 exp0 12804 . . . . 5 (𝐵 ∈ ℂ → (𝐵↑0) = 1)
21eqcomd 2627 . . . 4 (𝐵 ∈ ℂ → 1 = (𝐵↑0))
3 prodeq1 14564 . . . . . 6 (𝐴 = ∅ → ∏𝑘𝐴 𝐵 = ∏𝑘 ∈ ∅ 𝐵)
4 prod0 14598 . . . . . 6 𝑘 ∈ ∅ 𝐵 = 1
53, 4syl6eq 2671 . . . . 5 (𝐴 = ∅ → ∏𝑘𝐴 𝐵 = 1)
6 fveq2 6148 . . . . . . 7 (𝐴 = ∅ → (#‘𝐴) = (#‘∅))
7 hash0 13098 . . . . . . 7 (#‘∅) = 0
86, 7syl6eq 2671 . . . . . 6 (𝐴 = ∅ → (#‘𝐴) = 0)
98oveq2d 6620 . . . . 5 (𝐴 = ∅ → (𝐵↑(#‘𝐴)) = (𝐵↑0))
105, 9eqeq12d 2636 . . . 4 (𝐴 = ∅ → (∏𝑘𝐴 𝐵 = (𝐵↑(#‘𝐴)) ↔ 1 = (𝐵↑0)))
112, 10syl5ibrcom 237 . . 3 (𝐵 ∈ ℂ → (𝐴 = ∅ → ∏𝑘𝐴 𝐵 = (𝐵↑(#‘𝐴))))
1211adantl 482 . 2 ((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) → (𝐴 = ∅ → ∏𝑘𝐴 𝐵 = (𝐵↑(#‘𝐴))))
13 eqidd 2622 . . . . . . 7 (𝑘 = (𝑓𝑛) → 𝐵 = 𝐵)
14 simprl 793 . . . . . . 7 (((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto𝐴)) → (#‘𝐴) ∈ ℕ)
15 simprr 795 . . . . . . 7 (((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto𝐴)) → 𝑓:(1...(#‘𝐴))–1-1-onto𝐴)
16 simpllr 798 . . . . . . 7 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto𝐴)) ∧ 𝑘𝐴) → 𝐵 ∈ ℂ)
17 simpllr 798 . . . . . . . 8 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (1...(#‘𝐴))) → 𝐵 ∈ ℂ)
18 elfznn 12312 . . . . . . . . 9 (𝑛 ∈ (1...(#‘𝐴)) → 𝑛 ∈ ℕ)
1918adantl 482 . . . . . . . 8 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (1...(#‘𝐴))) → 𝑛 ∈ ℕ)
20 fvconst2g 6421 . . . . . . . 8 ((𝐵 ∈ ℂ ∧ 𝑛 ∈ ℕ) → ((ℕ × {𝐵})‘𝑛) = 𝐵)
2117, 19, 20syl2anc 692 . . . . . . 7 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (1...(#‘𝐴))) → ((ℕ × {𝐵})‘𝑛) = 𝐵)
2213, 14, 15, 16, 21fprod 14596 . . . . . 6 (((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto𝐴)) → ∏𝑘𝐴 𝐵 = (seq1( · , (ℕ × {𝐵}))‘(#‘𝐴)))
23 expnnval 12803 . . . . . . 7 ((𝐵 ∈ ℂ ∧ (#‘𝐴) ∈ ℕ) → (𝐵↑(#‘𝐴)) = (seq1( · , (ℕ × {𝐵}))‘(#‘𝐴)))
2423ad2ant2lr 783 . . . . . 6 (((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto𝐴)) → (𝐵↑(#‘𝐴)) = (seq1( · , (ℕ × {𝐵}))‘(#‘𝐴)))
2522, 24eqtr4d 2658 . . . . 5 (((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto𝐴)) → ∏𝑘𝐴 𝐵 = (𝐵↑(#‘𝐴)))
2625expr 642 . . . 4 (((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ (#‘𝐴) ∈ ℕ) → (𝑓:(1...(#‘𝐴))–1-1-onto𝐴 → ∏𝑘𝐴 𝐵 = (𝐵↑(#‘𝐴))))
2726exlimdv 1858 . . 3 (((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ (#‘𝐴) ∈ ℕ) → (∃𝑓 𝑓:(1...(#‘𝐴))–1-1-onto𝐴 → ∏𝑘𝐴 𝐵 = (𝐵↑(#‘𝐴))))
2827expimpd 628 . 2 ((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) → (((#‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(#‘𝐴))–1-1-onto𝐴) → ∏𝑘𝐴 𝐵 = (𝐵↑(#‘𝐴))))
29 fz1f1o 14374 . . 3 (𝐴 ∈ Fin → (𝐴 = ∅ ∨ ((#‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(#‘𝐴))–1-1-onto𝐴)))
3029adantr 481 . 2 ((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) → (𝐴 = ∅ ∨ ((#‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(#‘𝐴))–1-1-onto𝐴)))
3112, 28, 30mpjaod 396 1 ((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) → ∏𝑘𝐴 𝐵 = (𝐵↑(#‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 383  wa 384   = wceq 1480  wex 1701  wcel 1987  c0 3891  {csn 4148   × cxp 5072  1-1-ontowf1o 5846  cfv 5847  (class class class)co 6604  Fincfn 7899  cc 9878  0cc0 9880  1c1 9881   · cmul 9885  cn 10964  ...cfz 12268  seqcseq 12741  cexp 12800  #chash 13057  cprod 14560
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-inf2 8482  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-se 5034  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-isom 5856  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-oadd 7509  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-sup 8292  df-oi 8359  df-card 8709  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-3 11024  df-n0 11237  df-z 11322  df-uz 11632  df-rp 11777  df-fz 12269  df-fzo 12407  df-seq 12742  df-exp 12801  df-hash 13058  df-cj 13773  df-re 13774  df-im 13775  df-sqrt 13909  df-abs 13910  df-clim 14153  df-prod 14561
This theorem is referenced by:  risefallfac  14680  gausslemma2dlem5  24996  gausslemma2dlem6  24997  bcprod  31329  etransclem23  39778  hoicvrrex  40074  ovnhoilem1  40119  vonsn  40209
  Copyright terms: Public domain W3C validator