MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fprodcvg Structured version   Visualization version   GIF version

Theorem fprodcvg 15287
Description: The sequence of partial products of a finite product converges to the whole product. (Contributed by Scott Fenton, 4-Dec-2017.)
Hypotheses
Ref Expression
prodmo.1 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))
prodmo.2 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
prodrb.3 (𝜑𝑁 ∈ (ℤ𝑀))
fprodcvg.4 (𝜑𝐴 ⊆ (𝑀...𝑁))
Assertion
Ref Expression
fprodcvg (𝜑 → seq𝑀( · , 𝐹) ⇝ (seq𝑀( · , 𝐹)‘𝑁))
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝜑,𝑘   𝑘,𝑀   𝑘,𝑁
Allowed substitution hint:   𝐵(𝑘)

Proof of Theorem fprodcvg
Dummy variables 𝑛 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2824 . 2 (ℤ𝑁) = (ℤ𝑁)
2 prodrb.3 . . 3 (𝜑𝑁 ∈ (ℤ𝑀))
3 eluzelz 12256 . . 3 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
42, 3syl 17 . 2 (𝜑𝑁 ∈ ℤ)
5 seqex 13374 . . 3 seq𝑀( · , 𝐹) ∈ V
65a1i 11 . 2 (𝜑 → seq𝑀( · , 𝐹) ∈ V)
7 eqid 2824 . . . 4 (ℤ𝑀) = (ℤ𝑀)
8 eluzel2 12251 . . . . 5 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
92, 8syl 17 . . . 4 (𝜑𝑀 ∈ ℤ)
10 eluzelz 12256 . . . . . . 7 (𝑘 ∈ (ℤ𝑀) → 𝑘 ∈ ℤ)
1110adantl 484 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑀)) → 𝑘 ∈ ℤ)
12 iftrue 4476 . . . . . . . . . 10 (𝑘𝐴 → if(𝑘𝐴, 𝐵, 1) = 𝐵)
1312adantl 484 . . . . . . . . 9 (((𝜑𝑘 ∈ (ℤ𝑀)) ∧ 𝑘𝐴) → if(𝑘𝐴, 𝐵, 1) = 𝐵)
14 prodmo.2 . . . . . . . . . 10 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
1514adantlr 713 . . . . . . . . 9 (((𝜑𝑘 ∈ (ℤ𝑀)) ∧ 𝑘𝐴) → 𝐵 ∈ ℂ)
1613, 15eqeltrd 2916 . . . . . . . 8 (((𝜑𝑘 ∈ (ℤ𝑀)) ∧ 𝑘𝐴) → if(𝑘𝐴, 𝐵, 1) ∈ ℂ)
1716ex 415 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝑘𝐴 → if(𝑘𝐴, 𝐵, 1) ∈ ℂ))
18 iffalse 4479 . . . . . . . 8 𝑘𝐴 → if(𝑘𝐴, 𝐵, 1) = 1)
19 ax-1cn 10598 . . . . . . . 8 1 ∈ ℂ
2018, 19eqeltrdi 2924 . . . . . . 7 𝑘𝐴 → if(𝑘𝐴, 𝐵, 1) ∈ ℂ)
2117, 20pm2.61d1 182 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑀)) → if(𝑘𝐴, 𝐵, 1) ∈ ℂ)
22 prodmo.1 . . . . . . 7 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))
2322fvmpt2 6782 . . . . . 6 ((𝑘 ∈ ℤ ∧ if(𝑘𝐴, 𝐵, 1) ∈ ℂ) → (𝐹𝑘) = if(𝑘𝐴, 𝐵, 1))
2411, 21, 23syl2anc 586 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) = if(𝑘𝐴, 𝐵, 1))
2524, 21eqeltrd 2916 . . . 4 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ ℂ)
267, 9, 25prodf 15246 . . 3 (𝜑 → seq𝑀( · , 𝐹):(ℤ𝑀)⟶ℂ)
2726, 2ffvelrnd 6855 . 2 (𝜑 → (seq𝑀( · , 𝐹)‘𝑁) ∈ ℂ)
28 mulid1 10642 . . . . 5 (𝑚 ∈ ℂ → (𝑚 · 1) = 𝑚)
2928adantl 484 . . . 4 (((𝜑𝑛 ∈ (ℤ𝑁)) ∧ 𝑚 ∈ ℂ) → (𝑚 · 1) = 𝑚)
302adantr 483 . . . 4 ((𝜑𝑛 ∈ (ℤ𝑁)) → 𝑁 ∈ (ℤ𝑀))
31 simpr 487 . . . 4 ((𝜑𝑛 ∈ (ℤ𝑁)) → 𝑛 ∈ (ℤ𝑁))
329adantr 483 . . . . . 6 ((𝜑𝑛 ∈ (ℤ𝑁)) → 𝑀 ∈ ℤ)
3325adantlr 713 . . . . . 6 (((𝜑𝑛 ∈ (ℤ𝑁)) ∧ 𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ ℂ)
347, 32, 33prodf 15246 . . . . 5 ((𝜑𝑛 ∈ (ℤ𝑁)) → seq𝑀( · , 𝐹):(ℤ𝑀)⟶ℂ)
3534, 30ffvelrnd 6855 . . . 4 ((𝜑𝑛 ∈ (ℤ𝑁)) → (seq𝑀( · , 𝐹)‘𝑁) ∈ ℂ)
36 elfzuz 12907 . . . . . 6 (𝑚 ∈ ((𝑁 + 1)...𝑛) → 𝑚 ∈ (ℤ‘(𝑁 + 1)))
37 eluzelz 12256 . . . . . . . . 9 (𝑚 ∈ (ℤ‘(𝑁 + 1)) → 𝑚 ∈ ℤ)
3837adantl 484 . . . . . . . 8 ((𝜑𝑚 ∈ (ℤ‘(𝑁 + 1))) → 𝑚 ∈ ℤ)
39 fprodcvg.4 . . . . . . . . . . . 12 (𝜑𝐴 ⊆ (𝑀...𝑁))
4039sseld 3969 . . . . . . . . . . 11 (𝜑 → (𝑚𝐴𝑚 ∈ (𝑀...𝑁)))
41 fznuz 12992 . . . . . . . . . . 11 (𝑚 ∈ (𝑀...𝑁) → ¬ 𝑚 ∈ (ℤ‘(𝑁 + 1)))
4240, 41syl6 35 . . . . . . . . . 10 (𝜑 → (𝑚𝐴 → ¬ 𝑚 ∈ (ℤ‘(𝑁 + 1))))
4342con2d 136 . . . . . . . . 9 (𝜑 → (𝑚 ∈ (ℤ‘(𝑁 + 1)) → ¬ 𝑚𝐴))
4443imp 409 . . . . . . . 8 ((𝜑𝑚 ∈ (ℤ‘(𝑁 + 1))) → ¬ 𝑚𝐴)
4538, 44eldifd 3950 . . . . . . 7 ((𝜑𝑚 ∈ (ℤ‘(𝑁 + 1))) → 𝑚 ∈ (ℤ ∖ 𝐴))
46 fveqeq2 6682 . . . . . . . 8 (𝑘 = 𝑚 → ((𝐹𝑘) = 1 ↔ (𝐹𝑚) = 1))
47 eldifi 4106 . . . . . . . . . 10 (𝑘 ∈ (ℤ ∖ 𝐴) → 𝑘 ∈ ℤ)
48 eldifn 4107 . . . . . . . . . . . 12 (𝑘 ∈ (ℤ ∖ 𝐴) → ¬ 𝑘𝐴)
4948, 18syl 17 . . . . . . . . . . 11 (𝑘 ∈ (ℤ ∖ 𝐴) → if(𝑘𝐴, 𝐵, 1) = 1)
5049, 19eqeltrdi 2924 . . . . . . . . . 10 (𝑘 ∈ (ℤ ∖ 𝐴) → if(𝑘𝐴, 𝐵, 1) ∈ ℂ)
5147, 50, 23syl2anc 586 . . . . . . . . 9 (𝑘 ∈ (ℤ ∖ 𝐴) → (𝐹𝑘) = if(𝑘𝐴, 𝐵, 1))
5251, 49eqtrd 2859 . . . . . . . 8 (𝑘 ∈ (ℤ ∖ 𝐴) → (𝐹𝑘) = 1)
5346, 52vtoclga 3577 . . . . . . 7 (𝑚 ∈ (ℤ ∖ 𝐴) → (𝐹𝑚) = 1)
5445, 53syl 17 . . . . . 6 ((𝜑𝑚 ∈ (ℤ‘(𝑁 + 1))) → (𝐹𝑚) = 1)
5536, 54sylan2 594 . . . . 5 ((𝜑𝑚 ∈ ((𝑁 + 1)...𝑛)) → (𝐹𝑚) = 1)
5655adantlr 713 . . . 4 (((𝜑𝑛 ∈ (ℤ𝑁)) ∧ 𝑚 ∈ ((𝑁 + 1)...𝑛)) → (𝐹𝑚) = 1)
5729, 30, 31, 35, 56seqid2 13419 . . 3 ((𝜑𝑛 ∈ (ℤ𝑁)) → (seq𝑀( · , 𝐹)‘𝑁) = (seq𝑀( · , 𝐹)‘𝑛))
5857eqcomd 2830 . 2 ((𝜑𝑛 ∈ (ℤ𝑁)) → (seq𝑀( · , 𝐹)‘𝑛) = (seq𝑀( · , 𝐹)‘𝑁))
591, 4, 6, 27, 58climconst 14903 1 (𝜑 → seq𝑀( · , 𝐹) ⇝ (seq𝑀( · , 𝐹)‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398   = wceq 1536  wcel 2113  Vcvv 3497  cdif 3936  wss 3939  ifcif 4470   class class class wbr 5069  cmpt 5149  cfv 6358  (class class class)co 7159  cc 10538  1c1 10541   + caddc 10543   · cmul 10545  cz 11984  cuz 12246  ...cfz 12895  seqcseq 13372  cli 14844
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-inf2 9107  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-1st 7692  df-2nd 7693  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-er 8292  df-en 8513  df-dom 8514  df-sdom 8515  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-div 11301  df-nn 11642  df-2 11703  df-n0 11901  df-z 11985  df-uz 12247  df-rp 12393  df-fz 12896  df-seq 13373  df-exp 13433  df-cj 14461  df-re 14462  df-im 14463  df-sqrt 14597  df-abs 14598  df-clim 14848
This theorem is referenced by:  prodmolem2a  15291
  Copyright terms: Public domain W3C validator