MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fproddiv Structured version   Visualization version   GIF version

Theorem fproddiv 15314
Description: The quotient of two finite products. (Contributed by Scott Fenton, 15-Jan-2018.)
Hypotheses
Ref Expression
fprodmul.1 (𝜑𝐴 ∈ Fin)
fprodmul.2 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
fprodmul.3 ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)
fproddiv.4 ((𝜑𝑘𝐴) → 𝐶 ≠ 0)
Assertion
Ref Expression
fproddiv (𝜑 → ∏𝑘𝐴 (𝐵 / 𝐶) = (∏𝑘𝐴 𝐵 / ∏𝑘𝐴 𝐶))
Distinct variable groups:   𝐴,𝑘   𝜑,𝑘
Allowed substitution hints:   𝐵(𝑘)   𝐶(𝑘)

Proof of Theorem fproddiv
Dummy variables 𝑓 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1div1e1 11329 . . . . 5 (1 / 1) = 1
21eqcomi 2830 . . . 4 1 = (1 / 1)
3 prodeq1 15262 . . . . 5 (𝐴 = ∅ → ∏𝑘𝐴 (𝐵 / 𝐶) = ∏𝑘 ∈ ∅ (𝐵 / 𝐶))
4 prod0 15296 . . . . 5 𝑘 ∈ ∅ (𝐵 / 𝐶) = 1
53, 4syl6eq 2872 . . . 4 (𝐴 = ∅ → ∏𝑘𝐴 (𝐵 / 𝐶) = 1)
6 prodeq1 15262 . . . . . 6 (𝐴 = ∅ → ∏𝑘𝐴 𝐵 = ∏𝑘 ∈ ∅ 𝐵)
7 prod0 15296 . . . . . 6 𝑘 ∈ ∅ 𝐵 = 1
86, 7syl6eq 2872 . . . . 5 (𝐴 = ∅ → ∏𝑘𝐴 𝐵 = 1)
9 prodeq1 15262 . . . . . 6 (𝐴 = ∅ → ∏𝑘𝐴 𝐶 = ∏𝑘 ∈ ∅ 𝐶)
10 prod0 15296 . . . . . 6 𝑘 ∈ ∅ 𝐶 = 1
119, 10syl6eq 2872 . . . . 5 (𝐴 = ∅ → ∏𝑘𝐴 𝐶 = 1)
128, 11oveq12d 7173 . . . 4 (𝐴 = ∅ → (∏𝑘𝐴 𝐵 / ∏𝑘𝐴 𝐶) = (1 / 1))
132, 5, 123eqtr4a 2882 . . 3 (𝐴 = ∅ → ∏𝑘𝐴 (𝐵 / 𝐶) = (∏𝑘𝐴 𝐵 / ∏𝑘𝐴 𝐶))
1413a1i 11 . 2 (𝜑 → (𝐴 = ∅ → ∏𝑘𝐴 (𝐵 / 𝐶) = (∏𝑘𝐴 𝐵 / ∏𝑘𝐴 𝐶)))
15 simprl 769 . . . . . . . . 9 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (♯‘𝐴) ∈ ℕ)
16 nnuz 12280 . . . . . . . . 9 ℕ = (ℤ‘1)
1715, 16eleqtrdi 2923 . . . . . . . 8 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (♯‘𝐴) ∈ (ℤ‘1))
18 fprodmul.2 . . . . . . . . . . 11 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
1918fmpttd 6878 . . . . . . . . . 10 (𝜑 → (𝑘𝐴𝐵):𝐴⟶ℂ)
20 f1of 6614 . . . . . . . . . . 11 (𝑓:(1...(♯‘𝐴))–1-1-onto𝐴𝑓:(1...(♯‘𝐴))⟶𝐴)
2120adantl 484 . . . . . . . . . 10 (((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → 𝑓:(1...(♯‘𝐴))⟶𝐴)
22 fco 6530 . . . . . . . . . 10 (((𝑘𝐴𝐵):𝐴⟶ℂ ∧ 𝑓:(1...(♯‘𝐴))⟶𝐴) → ((𝑘𝐴𝐵) ∘ 𝑓):(1...(♯‘𝐴))⟶ℂ)
2319, 21, 22syl2an 597 . . . . . . . . 9 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → ((𝑘𝐴𝐵) ∘ 𝑓):(1...(♯‘𝐴))⟶ℂ)
2423ffvelrnda 6850 . . . . . . . 8 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑛) ∈ ℂ)
25 fprodmul.3 . . . . . . . . . . 11 ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)
2625fmpttd 6878 . . . . . . . . . 10 (𝜑 → (𝑘𝐴𝐶):𝐴⟶ℂ)
27 fco 6530 . . . . . . . . . 10 (((𝑘𝐴𝐶):𝐴⟶ℂ ∧ 𝑓:(1...(♯‘𝐴))⟶𝐴) → ((𝑘𝐴𝐶) ∘ 𝑓):(1...(♯‘𝐴))⟶ℂ)
2826, 21, 27syl2an 597 . . . . . . . . 9 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → ((𝑘𝐴𝐶) ∘ 𝑓):(1...(♯‘𝐴))⟶ℂ)
2928ffvelrnda 6850 . . . . . . . 8 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑛) ∈ ℂ)
30 simprr 771 . . . . . . . . . . 11 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)
3130, 20syl 17 . . . . . . . . . 10 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → 𝑓:(1...(♯‘𝐴))⟶𝐴)
32 fvco3 6759 . . . . . . . . . 10 ((𝑓:(1...(♯‘𝐴))⟶𝐴𝑛 ∈ (1...(♯‘𝐴))) → (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑛) = ((𝑘𝐴𝐶)‘(𝑓𝑛)))
3331, 32sylan 582 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑛) = ((𝑘𝐴𝐶)‘(𝑓𝑛)))
3431ffvelrnda 6850 . . . . . . . . . 10 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → (𝑓𝑛) ∈ 𝐴)
35 simpr 487 . . . . . . . . . . . . . 14 ((𝜑𝑘𝐴) → 𝑘𝐴)
36 eqid 2821 . . . . . . . . . . . . . . 15 (𝑘𝐴𝐶) = (𝑘𝐴𝐶)
3736fvmpt2 6778 . . . . . . . . . . . . . 14 ((𝑘𝐴𝐶 ∈ ℂ) → ((𝑘𝐴𝐶)‘𝑘) = 𝐶)
3835, 25, 37syl2anc 586 . . . . . . . . . . . . 13 ((𝜑𝑘𝐴) → ((𝑘𝐴𝐶)‘𝑘) = 𝐶)
39 fproddiv.4 . . . . . . . . . . . . 13 ((𝜑𝑘𝐴) → 𝐶 ≠ 0)
4038, 39eqnetrd 3083 . . . . . . . . . . . 12 ((𝜑𝑘𝐴) → ((𝑘𝐴𝐶)‘𝑘) ≠ 0)
4140ralrimiva 3182 . . . . . . . . . . 11 (𝜑 → ∀𝑘𝐴 ((𝑘𝐴𝐶)‘𝑘) ≠ 0)
4241ad2antrr 724 . . . . . . . . . 10 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → ∀𝑘𝐴 ((𝑘𝐴𝐶)‘𝑘) ≠ 0)
43 nffvmpt1 6680 . . . . . . . . . . . 12 𝑘((𝑘𝐴𝐶)‘(𝑓𝑛))
44 nfcv 2977 . . . . . . . . . . . 12 𝑘0
4543, 44nfne 3119 . . . . . . . . . . 11 𝑘((𝑘𝐴𝐶)‘(𝑓𝑛)) ≠ 0
46 fveq2 6669 . . . . . . . . . . . 12 (𝑘 = (𝑓𝑛) → ((𝑘𝐴𝐶)‘𝑘) = ((𝑘𝐴𝐶)‘(𝑓𝑛)))
4746neeq1d 3075 . . . . . . . . . . 11 (𝑘 = (𝑓𝑛) → (((𝑘𝐴𝐶)‘𝑘) ≠ 0 ↔ ((𝑘𝐴𝐶)‘(𝑓𝑛)) ≠ 0))
4845, 47rspc 3610 . . . . . . . . . 10 ((𝑓𝑛) ∈ 𝐴 → (∀𝑘𝐴 ((𝑘𝐴𝐶)‘𝑘) ≠ 0 → ((𝑘𝐴𝐶)‘(𝑓𝑛)) ≠ 0))
4934, 42, 48sylc 65 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → ((𝑘𝐴𝐶)‘(𝑓𝑛)) ≠ 0)
5033, 49eqnetrd 3083 . . . . . . . 8 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑛) ≠ 0)
5118, 25, 39divcld 11415 . . . . . . . . . . . . . 14 ((𝜑𝑘𝐴) → (𝐵 / 𝐶) ∈ ℂ)
52 eqid 2821 . . . . . . . . . . . . . . 15 (𝑘𝐴 ↦ (𝐵 / 𝐶)) = (𝑘𝐴 ↦ (𝐵 / 𝐶))
5352fvmpt2 6778 . . . . . . . . . . . . . 14 ((𝑘𝐴 ∧ (𝐵 / 𝐶) ∈ ℂ) → ((𝑘𝐴 ↦ (𝐵 / 𝐶))‘𝑘) = (𝐵 / 𝐶))
5435, 51, 53syl2anc 586 . . . . . . . . . . . . 13 ((𝜑𝑘𝐴) → ((𝑘𝐴 ↦ (𝐵 / 𝐶))‘𝑘) = (𝐵 / 𝐶))
55 eqid 2821 . . . . . . . . . . . . . . . 16 (𝑘𝐴𝐵) = (𝑘𝐴𝐵)
5655fvmpt2 6778 . . . . . . . . . . . . . . 15 ((𝑘𝐴𝐵 ∈ ℂ) → ((𝑘𝐴𝐵)‘𝑘) = 𝐵)
5735, 18, 56syl2anc 586 . . . . . . . . . . . . . 14 ((𝜑𝑘𝐴) → ((𝑘𝐴𝐵)‘𝑘) = 𝐵)
5857, 38oveq12d 7173 . . . . . . . . . . . . 13 ((𝜑𝑘𝐴) → (((𝑘𝐴𝐵)‘𝑘) / ((𝑘𝐴𝐶)‘𝑘)) = (𝐵 / 𝐶))
5954, 58eqtr4d 2859 . . . . . . . . . . . 12 ((𝜑𝑘𝐴) → ((𝑘𝐴 ↦ (𝐵 / 𝐶))‘𝑘) = (((𝑘𝐴𝐵)‘𝑘) / ((𝑘𝐴𝐶)‘𝑘)))
6059ralrimiva 3182 . . . . . . . . . . 11 (𝜑 → ∀𝑘𝐴 ((𝑘𝐴 ↦ (𝐵 / 𝐶))‘𝑘) = (((𝑘𝐴𝐵)‘𝑘) / ((𝑘𝐴𝐶)‘𝑘)))
6160ad2antrr 724 . . . . . . . . . 10 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → ∀𝑘𝐴 ((𝑘𝐴 ↦ (𝐵 / 𝐶))‘𝑘) = (((𝑘𝐴𝐵)‘𝑘) / ((𝑘𝐴𝐶)‘𝑘)))
62 nffvmpt1 6680 . . . . . . . . . . . 12 𝑘((𝑘𝐴 ↦ (𝐵 / 𝐶))‘(𝑓𝑛))
63 nffvmpt1 6680 . . . . . . . . . . . . 13 𝑘((𝑘𝐴𝐵)‘(𝑓𝑛))
64 nfcv 2977 . . . . . . . . . . . . 13 𝑘 /
6563, 64, 43nfov 7185 . . . . . . . . . . . 12 𝑘(((𝑘𝐴𝐵)‘(𝑓𝑛)) / ((𝑘𝐴𝐶)‘(𝑓𝑛)))
6662, 65nfeq 2991 . . . . . . . . . . 11 𝑘((𝑘𝐴 ↦ (𝐵 / 𝐶))‘(𝑓𝑛)) = (((𝑘𝐴𝐵)‘(𝑓𝑛)) / ((𝑘𝐴𝐶)‘(𝑓𝑛)))
67 fveq2 6669 . . . . . . . . . . . 12 (𝑘 = (𝑓𝑛) → ((𝑘𝐴 ↦ (𝐵 / 𝐶))‘𝑘) = ((𝑘𝐴 ↦ (𝐵 / 𝐶))‘(𝑓𝑛)))
68 fveq2 6669 . . . . . . . . . . . . 13 (𝑘 = (𝑓𝑛) → ((𝑘𝐴𝐵)‘𝑘) = ((𝑘𝐴𝐵)‘(𝑓𝑛)))
6968, 46oveq12d 7173 . . . . . . . . . . . 12 (𝑘 = (𝑓𝑛) → (((𝑘𝐴𝐵)‘𝑘) / ((𝑘𝐴𝐶)‘𝑘)) = (((𝑘𝐴𝐵)‘(𝑓𝑛)) / ((𝑘𝐴𝐶)‘(𝑓𝑛))))
7067, 69eqeq12d 2837 . . . . . . . . . . 11 (𝑘 = (𝑓𝑛) → (((𝑘𝐴 ↦ (𝐵 / 𝐶))‘𝑘) = (((𝑘𝐴𝐵)‘𝑘) / ((𝑘𝐴𝐶)‘𝑘)) ↔ ((𝑘𝐴 ↦ (𝐵 / 𝐶))‘(𝑓𝑛)) = (((𝑘𝐴𝐵)‘(𝑓𝑛)) / ((𝑘𝐴𝐶)‘(𝑓𝑛)))))
7166, 70rspc 3610 . . . . . . . . . 10 ((𝑓𝑛) ∈ 𝐴 → (∀𝑘𝐴 ((𝑘𝐴 ↦ (𝐵 / 𝐶))‘𝑘) = (((𝑘𝐴𝐵)‘𝑘) / ((𝑘𝐴𝐶)‘𝑘)) → ((𝑘𝐴 ↦ (𝐵 / 𝐶))‘(𝑓𝑛)) = (((𝑘𝐴𝐵)‘(𝑓𝑛)) / ((𝑘𝐴𝐶)‘(𝑓𝑛)))))
7234, 61, 71sylc 65 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → ((𝑘𝐴 ↦ (𝐵 / 𝐶))‘(𝑓𝑛)) = (((𝑘𝐴𝐵)‘(𝑓𝑛)) / ((𝑘𝐴𝐶)‘(𝑓𝑛))))
73 fvco3 6759 . . . . . . . . . 10 ((𝑓:(1...(♯‘𝐴))⟶𝐴𝑛 ∈ (1...(♯‘𝐴))) → (((𝑘𝐴 ↦ (𝐵 / 𝐶)) ∘ 𝑓)‘𝑛) = ((𝑘𝐴 ↦ (𝐵 / 𝐶))‘(𝑓𝑛)))
7431, 73sylan 582 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → (((𝑘𝐴 ↦ (𝐵 / 𝐶)) ∘ 𝑓)‘𝑛) = ((𝑘𝐴 ↦ (𝐵 / 𝐶))‘(𝑓𝑛)))
75 fvco3 6759 . . . . . . . . . . 11 ((𝑓:(1...(♯‘𝐴))⟶𝐴𝑛 ∈ (1...(♯‘𝐴))) → (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑛) = ((𝑘𝐴𝐵)‘(𝑓𝑛)))
7631, 75sylan 582 . . . . . . . . . 10 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑛) = ((𝑘𝐴𝐵)‘(𝑓𝑛)))
7776, 33oveq12d 7173 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → ((((𝑘𝐴𝐵) ∘ 𝑓)‘𝑛) / (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑛)) = (((𝑘𝐴𝐵)‘(𝑓𝑛)) / ((𝑘𝐴𝐶)‘(𝑓𝑛))))
7872, 74, 773eqtr4d 2866 . . . . . . . 8 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → (((𝑘𝐴 ↦ (𝐵 / 𝐶)) ∘ 𝑓)‘𝑛) = ((((𝑘𝐴𝐵) ∘ 𝑓)‘𝑛) / (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑛)))
7917, 24, 29, 50, 78prodfdiv 15251 . . . . . . 7 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (seq1( · , ((𝑘𝐴 ↦ (𝐵 / 𝐶)) ∘ 𝑓))‘(♯‘𝐴)) = ((seq1( · , ((𝑘𝐴𝐵) ∘ 𝑓))‘(♯‘𝐴)) / (seq1( · , ((𝑘𝐴𝐶) ∘ 𝑓))‘(♯‘𝐴))))
80 fveq2 6669 . . . . . . . 8 (𝑚 = (𝑓𝑛) → ((𝑘𝐴 ↦ (𝐵 / 𝐶))‘𝑚) = ((𝑘𝐴 ↦ (𝐵 / 𝐶))‘(𝑓𝑛)))
8151fmpttd 6878 . . . . . . . . . 10 (𝜑 → (𝑘𝐴 ↦ (𝐵 / 𝐶)):𝐴⟶ℂ)
8281adantr 483 . . . . . . . . 9 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (𝑘𝐴 ↦ (𝐵 / 𝐶)):𝐴⟶ℂ)
8382ffvelrnda 6850 . . . . . . . 8 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑚𝐴) → ((𝑘𝐴 ↦ (𝐵 / 𝐶))‘𝑚) ∈ ℂ)
8480, 15, 30, 83, 74fprod 15294 . . . . . . 7 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → ∏𝑚𝐴 ((𝑘𝐴 ↦ (𝐵 / 𝐶))‘𝑚) = (seq1( · , ((𝑘𝐴 ↦ (𝐵 / 𝐶)) ∘ 𝑓))‘(♯‘𝐴)))
85 fveq2 6669 . . . . . . . . 9 (𝑚 = (𝑓𝑛) → ((𝑘𝐴𝐵)‘𝑚) = ((𝑘𝐴𝐵)‘(𝑓𝑛)))
8619adantr 483 . . . . . . . . . 10 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (𝑘𝐴𝐵):𝐴⟶ℂ)
8786ffvelrnda 6850 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑚𝐴) → ((𝑘𝐴𝐵)‘𝑚) ∈ ℂ)
8885, 15, 30, 87, 76fprod 15294 . . . . . . . 8 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → ∏𝑚𝐴 ((𝑘𝐴𝐵)‘𝑚) = (seq1( · , ((𝑘𝐴𝐵) ∘ 𝑓))‘(♯‘𝐴)))
89 fveq2 6669 . . . . . . . . 9 (𝑚 = (𝑓𝑛) → ((𝑘𝐴𝐶)‘𝑚) = ((𝑘𝐴𝐶)‘(𝑓𝑛)))
9026adantr 483 . . . . . . . . . 10 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (𝑘𝐴𝐶):𝐴⟶ℂ)
9190ffvelrnda 6850 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑚𝐴) → ((𝑘𝐴𝐶)‘𝑚) ∈ ℂ)
9289, 15, 30, 91, 33fprod 15294 . . . . . . . 8 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → ∏𝑚𝐴 ((𝑘𝐴𝐶)‘𝑚) = (seq1( · , ((𝑘𝐴𝐶) ∘ 𝑓))‘(♯‘𝐴)))
9388, 92oveq12d 7173 . . . . . . 7 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (∏𝑚𝐴 ((𝑘𝐴𝐵)‘𝑚) / ∏𝑚𝐴 ((𝑘𝐴𝐶)‘𝑚)) = ((seq1( · , ((𝑘𝐴𝐵) ∘ 𝑓))‘(♯‘𝐴)) / (seq1( · , ((𝑘𝐴𝐶) ∘ 𝑓))‘(♯‘𝐴))))
9479, 84, 933eqtr4d 2866 . . . . . 6 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → ∏𝑚𝐴 ((𝑘𝐴 ↦ (𝐵 / 𝐶))‘𝑚) = (∏𝑚𝐴 ((𝑘𝐴𝐵)‘𝑚) / ∏𝑚𝐴 ((𝑘𝐴𝐶)‘𝑚)))
95 prodfc 15298 . . . . . 6 𝑚𝐴 ((𝑘𝐴 ↦ (𝐵 / 𝐶))‘𝑚) = ∏𝑘𝐴 (𝐵 / 𝐶)
96 prodfc 15298 . . . . . . 7 𝑚𝐴 ((𝑘𝐴𝐵)‘𝑚) = ∏𝑘𝐴 𝐵
97 prodfc 15298 . . . . . . 7 𝑚𝐴 ((𝑘𝐴𝐶)‘𝑚) = ∏𝑘𝐴 𝐶
9896, 97oveq12i 7167 . . . . . 6 (∏𝑚𝐴 ((𝑘𝐴𝐵)‘𝑚) / ∏𝑚𝐴 ((𝑘𝐴𝐶)‘𝑚)) = (∏𝑘𝐴 𝐵 / ∏𝑘𝐴 𝐶)
9994, 95, 983eqtr3g 2879 . . . . 5 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → ∏𝑘𝐴 (𝐵 / 𝐶) = (∏𝑘𝐴 𝐵 / ∏𝑘𝐴 𝐶))
10099expr 459 . . . 4 ((𝜑 ∧ (♯‘𝐴) ∈ ℕ) → (𝑓:(1...(♯‘𝐴))–1-1-onto𝐴 → ∏𝑘𝐴 (𝐵 / 𝐶) = (∏𝑘𝐴 𝐵 / ∏𝑘𝐴 𝐶)))
101100exlimdv 1930 . . 3 ((𝜑 ∧ (♯‘𝐴) ∈ ℕ) → (∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴 → ∏𝑘𝐴 (𝐵 / 𝐶) = (∏𝑘𝐴 𝐵 / ∏𝑘𝐴 𝐶)))
102101expimpd 456 . 2 (𝜑 → (((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → ∏𝑘𝐴 (𝐵 / 𝐶) = (∏𝑘𝐴 𝐵 / ∏𝑘𝐴 𝐶)))
103 fprodmul.1 . . 3 (𝜑𝐴 ∈ Fin)
104 fz1f1o 15066 . . 3 (𝐴 ∈ Fin → (𝐴 = ∅ ∨ ((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)))
105103, 104syl 17 . 2 (𝜑 → (𝐴 = ∅ ∨ ((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)))
10614, 102, 105mpjaod 856 1 (𝜑 → ∏𝑘𝐴 (𝐵 / 𝐶) = (∏𝑘𝐴 𝐵 / ∏𝑘𝐴 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  wo 843   = wceq 1533  wex 1776  wcel 2110  wne 3016  wral 3138  c0 4290  cmpt 5145  ccom 5558  wf 6350  1-1-ontowf1o 6353  cfv 6354  (class class class)co 7155  Fincfn 8508  cc 10534  0cc0 10536  1c1 10537   · cmul 10541   / cdiv 11296  cn 11637  cuz 12242  ...cfz 12891  seqcseq 13368  chash 13689  cprod 15258
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-inf2 9103  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613  ax-pre-sup 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-int 4876  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-se 5514  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-isom 6363  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7580  df-1st 7688  df-2nd 7689  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-1o 8101  df-oadd 8105  df-er 8288  df-en 8509  df-dom 8510  df-sdom 8511  df-fin 8512  df-sup 8905  df-oi 8973  df-card 9367  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-div 11297  df-nn 11638  df-2 11699  df-3 11700  df-n0 11897  df-z 11981  df-uz 12243  df-rp 12389  df-fz 12892  df-fzo 13033  df-seq 13369  df-exp 13429  df-hash 13690  df-cj 14457  df-re 14458  df-im 14459  df-sqrt 14593  df-abs 14594  df-clim 14844  df-prod 15259
This theorem is referenced by:  fproddivf  15340  bcprod  32970
  Copyright terms: Public domain W3C validator