MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fprodfvdvdsd Structured version   Visualization version   GIF version

Theorem fprodfvdvdsd 14977
Description: A finite product of integers is divisible by any of its factors being function values. (Contributed by AV, 1-Aug-2021.)
Hypotheses
Ref Expression
fprodfvdvdsd.a (𝜑𝐴 ∈ Fin)
fprodfvdvdsd.b (𝜑𝐴𝐵)
fprodfvdvdsd.f (𝜑𝐹:𝐵⟶ℤ)
Assertion
Ref Expression
fprodfvdvdsd (𝜑 → ∀𝑥𝐴 (𝐹𝑥) ∥ ∏𝑘𝐴 (𝐹𝑘))
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝜑,𝑘,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥,𝑘)   𝐹(𝑥)

Proof of Theorem fprodfvdvdsd
StepHypRef Expression
1 fprodfvdvdsd.a . . . . . . 7 (𝜑𝐴 ∈ Fin)
21adantr 481 . . . . . 6 ((𝜑𝑥𝐴) → 𝐴 ∈ Fin)
3 diffi 8137 . . . . . 6 (𝐴 ∈ Fin → (𝐴 ∖ {𝑥}) ∈ Fin)
42, 3syl 17 . . . . 5 ((𝜑𝑥𝐴) → (𝐴 ∖ {𝑥}) ∈ Fin)
5 fprodfvdvdsd.f . . . . . . . 8 (𝜑𝐹:𝐵⟶ℤ)
65adantr 481 . . . . . . 7 ((𝜑𝑘 ∈ (𝐴 ∖ {𝑥})) → 𝐹:𝐵⟶ℤ)
7 fprodfvdvdsd.b . . . . . . . . 9 (𝜑𝐴𝐵)
87ssdifssd 3731 . . . . . . . 8 (𝜑 → (𝐴 ∖ {𝑥}) ⊆ 𝐵)
98sselda 3588 . . . . . . 7 ((𝜑𝑘 ∈ (𝐴 ∖ {𝑥})) → 𝑘𝐵)
106, 9ffvelrnd 6317 . . . . . 6 ((𝜑𝑘 ∈ (𝐴 ∖ {𝑥})) → (𝐹𝑘) ∈ ℤ)
1110adantlr 750 . . . . 5 (((𝜑𝑥𝐴) ∧ 𝑘 ∈ (𝐴 ∖ {𝑥})) → (𝐹𝑘) ∈ ℤ)
124, 11fprodzcl 14604 . . . 4 ((𝜑𝑥𝐴) → ∏𝑘 ∈ (𝐴 ∖ {𝑥})(𝐹𝑘) ∈ ℤ)
135adantr 481 . . . . 5 ((𝜑𝑥𝐴) → 𝐹:𝐵⟶ℤ)
147sselda 3588 . . . . 5 ((𝜑𝑥𝐴) → 𝑥𝐵)
1513, 14ffvelrnd 6317 . . . 4 ((𝜑𝑥𝐴) → (𝐹𝑥) ∈ ℤ)
16 dvdsmul2 14923 . . . 4 ((∏𝑘 ∈ (𝐴 ∖ {𝑥})(𝐹𝑘) ∈ ℤ ∧ (𝐹𝑥) ∈ ℤ) → (𝐹𝑥) ∥ (∏𝑘 ∈ (𝐴 ∖ {𝑥})(𝐹𝑘) · (𝐹𝑥)))
1712, 15, 16syl2anc 692 . . 3 ((𝜑𝑥𝐴) → (𝐹𝑥) ∥ (∏𝑘 ∈ (𝐴 ∖ {𝑥})(𝐹𝑘) · (𝐹𝑥)))
1817ralrimiva 2965 . 2 (𝜑 → ∀𝑥𝐴 (𝐹𝑥) ∥ (∏𝑘 ∈ (𝐴 ∖ {𝑥})(𝐹𝑘) · (𝐹𝑥)))
19 neldifsnd 4296 . . . . . . 7 ((𝜑𝑥𝐴) → ¬ 𝑥 ∈ (𝐴 ∖ {𝑥}))
20 disjsn 4221 . . . . . . 7 (((𝐴 ∖ {𝑥}) ∩ {𝑥}) = ∅ ↔ ¬ 𝑥 ∈ (𝐴 ∖ {𝑥}))
2119, 20sylibr 224 . . . . . 6 ((𝜑𝑥𝐴) → ((𝐴 ∖ {𝑥}) ∩ {𝑥}) = ∅)
22 difsnid 4315 . . . . . . . 8 (𝑥𝐴 → ((𝐴 ∖ {𝑥}) ∪ {𝑥}) = 𝐴)
2322eqcomd 2632 . . . . . . 7 (𝑥𝐴𝐴 = ((𝐴 ∖ {𝑥}) ∪ {𝑥}))
2423adantl 482 . . . . . 6 ((𝜑𝑥𝐴) → 𝐴 = ((𝐴 ∖ {𝑥}) ∪ {𝑥}))
2513adantr 481 . . . . . . . 8 (((𝜑𝑥𝐴) ∧ 𝑘𝐴) → 𝐹:𝐵⟶ℤ)
267adantr 481 . . . . . . . . 9 ((𝜑𝑥𝐴) → 𝐴𝐵)
2726sselda 3588 . . . . . . . 8 (((𝜑𝑥𝐴) ∧ 𝑘𝐴) → 𝑘𝐵)
2825, 27ffvelrnd 6317 . . . . . . 7 (((𝜑𝑥𝐴) ∧ 𝑘𝐴) → (𝐹𝑘) ∈ ℤ)
2928zcnd 11427 . . . . . 6 (((𝜑𝑥𝐴) ∧ 𝑘𝐴) → (𝐹𝑘) ∈ ℂ)
3021, 24, 2, 29fprodsplit 14616 . . . . 5 ((𝜑𝑥𝐴) → ∏𝑘𝐴 (𝐹𝑘) = (∏𝑘 ∈ (𝐴 ∖ {𝑥})(𝐹𝑘) · ∏𝑘 ∈ {𝑥} (𝐹𝑘)))
31 simpr 477 . . . . . . 7 ((𝜑𝑥𝐴) → 𝑥𝐴)
3215zcnd 11427 . . . . . . 7 ((𝜑𝑥𝐴) → (𝐹𝑥) ∈ ℂ)
33 fveq2 6150 . . . . . . . 8 (𝑘 = 𝑥 → (𝐹𝑘) = (𝐹𝑥))
3433prodsn 14612 . . . . . . 7 ((𝑥𝐴 ∧ (𝐹𝑥) ∈ ℂ) → ∏𝑘 ∈ {𝑥} (𝐹𝑘) = (𝐹𝑥))
3531, 32, 34syl2anc 692 . . . . . 6 ((𝜑𝑥𝐴) → ∏𝑘 ∈ {𝑥} (𝐹𝑘) = (𝐹𝑥))
3635oveq2d 6621 . . . . 5 ((𝜑𝑥𝐴) → (∏𝑘 ∈ (𝐴 ∖ {𝑥})(𝐹𝑘) · ∏𝑘 ∈ {𝑥} (𝐹𝑘)) = (∏𝑘 ∈ (𝐴 ∖ {𝑥})(𝐹𝑘) · (𝐹𝑥)))
3730, 36eqtrd 2660 . . . 4 ((𝜑𝑥𝐴) → ∏𝑘𝐴 (𝐹𝑘) = (∏𝑘 ∈ (𝐴 ∖ {𝑥})(𝐹𝑘) · (𝐹𝑥)))
3837breq2d 4630 . . 3 ((𝜑𝑥𝐴) → ((𝐹𝑥) ∥ ∏𝑘𝐴 (𝐹𝑘) ↔ (𝐹𝑥) ∥ (∏𝑘 ∈ (𝐴 ∖ {𝑥})(𝐹𝑘) · (𝐹𝑥))))
3938ralbidva 2984 . 2 (𝜑 → (∀𝑥𝐴 (𝐹𝑥) ∥ ∏𝑘𝐴 (𝐹𝑘) ↔ ∀𝑥𝐴 (𝐹𝑥) ∥ (∏𝑘 ∈ (𝐴 ∖ {𝑥})(𝐹𝑘) · (𝐹𝑥))))
4018, 39mpbird 247 1 (𝜑 → ∀𝑥𝐴 (𝐹𝑥) ∥ ∏𝑘𝐴 (𝐹𝑘))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384   = wceq 1480  wcel 1992  wral 2912  cdif 3557  cun 3558  cin 3559  wss 3560  c0 3896  {csn 4153   class class class wbr 4618  wf 5846  cfv 5850  (class class class)co 6605  Fincfn 7900  cc 9879   · cmul 9886  cz 11322  cprod 14555  cdvds 14902
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903  ax-inf2 8483  ax-cnex 9937  ax-resscn 9938  ax-1cn 9939  ax-icn 9940  ax-addcl 9941  ax-addrcl 9942  ax-mulcl 9943  ax-mulrcl 9944  ax-mulcom 9945  ax-addass 9946  ax-mulass 9947  ax-distr 9948  ax-i2m1 9949  ax-1ne0 9950  ax-1rid 9951  ax-rnegex 9952  ax-rrecex 9953  ax-cnre 9954  ax-pre-lttri 9955  ax-pre-lttrn 9956  ax-pre-ltadd 9957  ax-pre-mulgt0 9958  ax-pre-sup 9959
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-nel 2900  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3193  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-se 5039  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5642  df-ord 5688  df-on 5689  df-lim 5690  df-suc 5691  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-f1 5855  df-fo 5856  df-f1o 5857  df-fv 5858  df-isom 5859  df-riota 6566  df-ov 6608  df-oprab 6609  df-mpt2 6610  df-om 7014  df-1st 7116  df-2nd 7117  df-wrecs 7353  df-recs 7414  df-rdg 7452  df-1o 7506  df-oadd 7510  df-er 7688  df-en 7901  df-dom 7902  df-sdom 7903  df-fin 7904  df-sup 8293  df-oi 8360  df-card 8710  df-pnf 10021  df-mnf 10022  df-xr 10023  df-ltxr 10024  df-le 10025  df-sub 10213  df-neg 10214  df-div 10630  df-nn 10966  df-2 11024  df-3 11025  df-n0 11238  df-z 11323  df-uz 11632  df-rp 11777  df-fz 12266  df-fzo 12404  df-seq 12739  df-exp 12798  df-hash 13055  df-cj 13768  df-re 13769  df-im 13770  df-sqrt 13904  df-abs 13905  df-clim 14148  df-prod 14556  df-dvds 14903
This theorem is referenced by:  fproddvdsd  14978  fmtnodvds  40724
  Copyright terms: Public domain W3C validator