MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fprodfvdvdsd Structured version   Visualization version   GIF version

Theorem fprodfvdvdsd 15685
Description: A finite product of integers is divisible by any of its factors being function values. (Contributed by AV, 1-Aug-2021.)
Hypotheses
Ref Expression
fprodfvdvdsd.a (𝜑𝐴 ∈ Fin)
fprodfvdvdsd.b (𝜑𝐴𝐵)
fprodfvdvdsd.f (𝜑𝐹:𝐵⟶ℤ)
Assertion
Ref Expression
fprodfvdvdsd (𝜑 → ∀𝑥𝐴 (𝐹𝑥) ∥ ∏𝑘𝐴 (𝐹𝑘))
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝜑,𝑘,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥,𝑘)   𝐹(𝑥)

Proof of Theorem fprodfvdvdsd
StepHypRef Expression
1 fprodfvdvdsd.a . . . . . . 7 (𝜑𝐴 ∈ Fin)
21adantr 483 . . . . . 6 ((𝜑𝑥𝐴) → 𝐴 ∈ Fin)
3 diffi 8752 . . . . . 6 (𝐴 ∈ Fin → (𝐴 ∖ {𝑥}) ∈ Fin)
42, 3syl 17 . . . . 5 ((𝜑𝑥𝐴) → (𝐴 ∖ {𝑥}) ∈ Fin)
5 fprodfvdvdsd.f . . . . . . . 8 (𝜑𝐹:𝐵⟶ℤ)
65adantr 483 . . . . . . 7 ((𝜑𝑘 ∈ (𝐴 ∖ {𝑥})) → 𝐹:𝐵⟶ℤ)
7 fprodfvdvdsd.b . . . . . . . . 9 (𝜑𝐴𝐵)
87ssdifssd 4121 . . . . . . . 8 (𝜑 → (𝐴 ∖ {𝑥}) ⊆ 𝐵)
98sselda 3969 . . . . . . 7 ((𝜑𝑘 ∈ (𝐴 ∖ {𝑥})) → 𝑘𝐵)
106, 9ffvelrnd 6854 . . . . . 6 ((𝜑𝑘 ∈ (𝐴 ∖ {𝑥})) → (𝐹𝑘) ∈ ℤ)
1110adantlr 713 . . . . 5 (((𝜑𝑥𝐴) ∧ 𝑘 ∈ (𝐴 ∖ {𝑥})) → (𝐹𝑘) ∈ ℤ)
124, 11fprodzcl 15310 . . . 4 ((𝜑𝑥𝐴) → ∏𝑘 ∈ (𝐴 ∖ {𝑥})(𝐹𝑘) ∈ ℤ)
135adantr 483 . . . . 5 ((𝜑𝑥𝐴) → 𝐹:𝐵⟶ℤ)
147sselda 3969 . . . . 5 ((𝜑𝑥𝐴) → 𝑥𝐵)
1513, 14ffvelrnd 6854 . . . 4 ((𝜑𝑥𝐴) → (𝐹𝑥) ∈ ℤ)
16 dvdsmul2 15634 . . . 4 ((∏𝑘 ∈ (𝐴 ∖ {𝑥})(𝐹𝑘) ∈ ℤ ∧ (𝐹𝑥) ∈ ℤ) → (𝐹𝑥) ∥ (∏𝑘 ∈ (𝐴 ∖ {𝑥})(𝐹𝑘) · (𝐹𝑥)))
1712, 15, 16syl2anc 586 . . 3 ((𝜑𝑥𝐴) → (𝐹𝑥) ∥ (∏𝑘 ∈ (𝐴 ∖ {𝑥})(𝐹𝑘) · (𝐹𝑥)))
1817ralrimiva 3184 . 2 (𝜑 → ∀𝑥𝐴 (𝐹𝑥) ∥ (∏𝑘 ∈ (𝐴 ∖ {𝑥})(𝐹𝑘) · (𝐹𝑥)))
19 neldifsnd 4728 . . . . . . 7 ((𝜑𝑥𝐴) → ¬ 𝑥 ∈ (𝐴 ∖ {𝑥}))
20 disjsn 4649 . . . . . . 7 (((𝐴 ∖ {𝑥}) ∩ {𝑥}) = ∅ ↔ ¬ 𝑥 ∈ (𝐴 ∖ {𝑥}))
2119, 20sylibr 236 . . . . . 6 ((𝜑𝑥𝐴) → ((𝐴 ∖ {𝑥}) ∩ {𝑥}) = ∅)
22 difsnid 4745 . . . . . . . 8 (𝑥𝐴 → ((𝐴 ∖ {𝑥}) ∪ {𝑥}) = 𝐴)
2322eqcomd 2829 . . . . . . 7 (𝑥𝐴𝐴 = ((𝐴 ∖ {𝑥}) ∪ {𝑥}))
2423adantl 484 . . . . . 6 ((𝜑𝑥𝐴) → 𝐴 = ((𝐴 ∖ {𝑥}) ∪ {𝑥}))
2513adantr 483 . . . . . . . 8 (((𝜑𝑥𝐴) ∧ 𝑘𝐴) → 𝐹:𝐵⟶ℤ)
267adantr 483 . . . . . . . . 9 ((𝜑𝑥𝐴) → 𝐴𝐵)
2726sselda 3969 . . . . . . . 8 (((𝜑𝑥𝐴) ∧ 𝑘𝐴) → 𝑘𝐵)
2825, 27ffvelrnd 6854 . . . . . . 7 (((𝜑𝑥𝐴) ∧ 𝑘𝐴) → (𝐹𝑘) ∈ ℤ)
2928zcnd 12091 . . . . . 6 (((𝜑𝑥𝐴) ∧ 𝑘𝐴) → (𝐹𝑘) ∈ ℂ)
3021, 24, 2, 29fprodsplit 15322 . . . . 5 ((𝜑𝑥𝐴) → ∏𝑘𝐴 (𝐹𝑘) = (∏𝑘 ∈ (𝐴 ∖ {𝑥})(𝐹𝑘) · ∏𝑘 ∈ {𝑥} (𝐹𝑘)))
31 simpr 487 . . . . . . 7 ((𝜑𝑥𝐴) → 𝑥𝐴)
3215zcnd 12091 . . . . . . 7 ((𝜑𝑥𝐴) → (𝐹𝑥) ∈ ℂ)
33 fveq2 6672 . . . . . . . 8 (𝑘 = 𝑥 → (𝐹𝑘) = (𝐹𝑥))
3433prodsn 15318 . . . . . . 7 ((𝑥𝐴 ∧ (𝐹𝑥) ∈ ℂ) → ∏𝑘 ∈ {𝑥} (𝐹𝑘) = (𝐹𝑥))
3531, 32, 34syl2anc 586 . . . . . 6 ((𝜑𝑥𝐴) → ∏𝑘 ∈ {𝑥} (𝐹𝑘) = (𝐹𝑥))
3635oveq2d 7174 . . . . 5 ((𝜑𝑥𝐴) → (∏𝑘 ∈ (𝐴 ∖ {𝑥})(𝐹𝑘) · ∏𝑘 ∈ {𝑥} (𝐹𝑘)) = (∏𝑘 ∈ (𝐴 ∖ {𝑥})(𝐹𝑘) · (𝐹𝑥)))
3730, 36eqtrd 2858 . . . 4 ((𝜑𝑥𝐴) → ∏𝑘𝐴 (𝐹𝑘) = (∏𝑘 ∈ (𝐴 ∖ {𝑥})(𝐹𝑘) · (𝐹𝑥)))
3837breq2d 5080 . . 3 ((𝜑𝑥𝐴) → ((𝐹𝑥) ∥ ∏𝑘𝐴 (𝐹𝑘) ↔ (𝐹𝑥) ∥ (∏𝑘 ∈ (𝐴 ∖ {𝑥})(𝐹𝑘) · (𝐹𝑥))))
3938ralbidva 3198 . 2 (𝜑 → (∀𝑥𝐴 (𝐹𝑥) ∥ ∏𝑘𝐴 (𝐹𝑘) ↔ ∀𝑥𝐴 (𝐹𝑥) ∥ (∏𝑘 ∈ (𝐴 ∖ {𝑥})(𝐹𝑘) · (𝐹𝑥))))
4018, 39mpbird 259 1 (𝜑 → ∀𝑥𝐴 (𝐹𝑥) ∥ ∏𝑘𝐴 (𝐹𝑘))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398   = wceq 1537  wcel 2114  wral 3140  cdif 3935  cun 3936  cin 3937  wss 3938  c0 4293  {csn 4569   class class class wbr 5068  wf 6353  cfv 6357  (class class class)co 7158  Fincfn 8511  cc 10537   · cmul 10544  cz 11984  cprod 15261  cdvds 15609
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-inf2 9106  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-sup 8908  df-oi 8976  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-n0 11901  df-z 11985  df-uz 12247  df-rp 12393  df-fz 12896  df-fzo 13037  df-seq 13373  df-exp 13433  df-hash 13694  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-clim 14847  df-prod 15262  df-dvds 15610
This theorem is referenced by:  fproddvdsd  15686  fmtnodvds  43713
  Copyright terms: Public domain W3C validator