MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fprodge0 Structured version   Visualization version   GIF version

Theorem fprodge0 14705
Description: If all the terms of a finite product are nonnegative, so is the product. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
fprodge0.kph 𝑘𝜑
fprodge0.a (𝜑𝐴 ∈ Fin)
fprodge0.b ((𝜑𝑘𝐴) → 𝐵 ∈ ℝ)
fprodge0.0leb ((𝜑𝑘𝐴) → 0 ≤ 𝐵)
Assertion
Ref Expression
fprodge0 (𝜑 → 0 ≤ ∏𝑘𝐴 𝐵)
Distinct variable group:   𝐴,𝑘
Allowed substitution hints:   𝜑(𝑘)   𝐵(𝑘)

Proof of Theorem fprodge0
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fprodge0.kph . . 3 𝑘𝜑
2 elrege0 12263 . . . . . . 7 (𝑥 ∈ (0[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
32simplbi 476 . . . . . 6 (𝑥 ∈ (0[,)+∞) → 𝑥 ∈ ℝ)
43ssriv 3599 . . . . 5 (0[,)+∞) ⊆ ℝ
5 ax-resscn 9978 . . . . 5 ℝ ⊆ ℂ
64, 5sstri 3604 . . . 4 (0[,)+∞) ⊆ ℂ
76a1i 11 . . 3 (𝜑 → (0[,)+∞) ⊆ ℂ)
8 ge0mulcl 12270 . . . 4 ((𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞)) → (𝑥 · 𝑦) ∈ (0[,)+∞))
98adantl 482 . . 3 ((𝜑 ∧ (𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞))) → (𝑥 · 𝑦) ∈ (0[,)+∞))
10 fprodge0.a . . 3 (𝜑𝐴 ∈ Fin)
11 fprodge0.b . . . 4 ((𝜑𝑘𝐴) → 𝐵 ∈ ℝ)
12 fprodge0.0leb . . . 4 ((𝜑𝑘𝐴) → 0 ≤ 𝐵)
13 elrege0 12263 . . . 4 (𝐵 ∈ (0[,)+∞) ↔ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵))
1411, 12, 13sylanbrc 697 . . 3 ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,)+∞))
15 1re 10024 . . . . . 6 1 ∈ ℝ
16 0le1 10536 . . . . . 6 0 ≤ 1
17 ltpnf 11939 . . . . . . 7 (1 ∈ ℝ → 1 < +∞)
1815, 17ax-mp 5 . . . . . 6 1 < +∞
1915, 16, 183pm3.2i 1237 . . . . 5 (1 ∈ ℝ ∧ 0 ≤ 1 ∧ 1 < +∞)
20 0e0icopnf 12267 . . . . . . 7 0 ∈ (0[,)+∞)
214, 20sselii 3592 . . . . . 6 0 ∈ ℝ
22 pnfxr 10077 . . . . . 6 +∞ ∈ ℝ*
23 elico2 12222 . . . . . 6 ((0 ∈ ℝ ∧ +∞ ∈ ℝ*) → (1 ∈ (0[,)+∞) ↔ (1 ∈ ℝ ∧ 0 ≤ 1 ∧ 1 < +∞)))
2421, 22, 23mp2an 707 . . . . 5 (1 ∈ (0[,)+∞) ↔ (1 ∈ ℝ ∧ 0 ≤ 1 ∧ 1 < +∞))
2519, 24mpbir 221 . . . 4 1 ∈ (0[,)+∞)
2625a1i 11 . . 3 (𝜑 → 1 ∈ (0[,)+∞))
271, 7, 9, 10, 14, 26fprodcllemf 14669 . 2 (𝜑 → ∏𝑘𝐴 𝐵 ∈ (0[,)+∞))
28 0xr 10071 . . . 4 0 ∈ ℝ*
2928a1i 11 . . 3 (∏𝑘𝐴 𝐵 ∈ (0[,)+∞) → 0 ∈ ℝ*)
3022a1i 11 . . 3 (∏𝑘𝐴 𝐵 ∈ (0[,)+∞) → +∞ ∈ ℝ*)
31 id 22 . . 3 (∏𝑘𝐴 𝐵 ∈ (0[,)+∞) → ∏𝑘𝐴 𝐵 ∈ (0[,)+∞))
32 icogelb 12210 . . 3 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ ∏𝑘𝐴 𝐵 ∈ (0[,)+∞)) → 0 ≤ ∏𝑘𝐴 𝐵)
3329, 30, 31, 32syl3anc 1324 . 2 (∏𝑘𝐴 𝐵 ∈ (0[,)+∞) → 0 ≤ ∏𝑘𝐴 𝐵)
3427, 33syl 17 1 (𝜑 → 0 ≤ ∏𝑘𝐴 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1036  wnf 1706  wcel 1988  wss 3567   class class class wbr 4644  (class class class)co 6635  Fincfn 7940  cc 9919  cr 9920  0cc0 9921  1c1 9922   · cmul 9926  +∞cpnf 10056  *cxr 10058   < clt 10059  cle 10060  [,)cico 12162  cprod 14616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-rep 4762  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934  ax-inf2 8523  ax-cnex 9977  ax-resscn 9978  ax-1cn 9979  ax-icn 9980  ax-addcl 9981  ax-addrcl 9982  ax-mulcl 9983  ax-mulrcl 9984  ax-mulcom 9985  ax-addass 9986  ax-mulass 9987  ax-distr 9988  ax-i2m1 9989  ax-1ne0 9990  ax-1rid 9991  ax-rnegex 9992  ax-rrecex 9993  ax-cnre 9994  ax-pre-lttri 9995  ax-pre-lttrn 9996  ax-pre-ltadd 9997  ax-pre-mulgt0 9998  ax-pre-sup 9999
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1484  df-fal 1487  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-nel 2895  df-ral 2914  df-rex 2915  df-reu 2916  df-rmo 2917  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-pss 3583  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-tp 4173  df-op 4175  df-uni 4428  df-int 4467  df-iun 4513  df-br 4645  df-opab 4704  df-mpt 4721  df-tr 4744  df-id 5014  df-eprel 5019  df-po 5025  df-so 5026  df-fr 5063  df-se 5064  df-we 5065  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-pred 5668  df-ord 5714  df-on 5715  df-lim 5716  df-suc 5717  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-isom 5885  df-riota 6596  df-ov 6638  df-oprab 6639  df-mpt2 6640  df-om 7051  df-1st 7153  df-2nd 7154  df-wrecs 7392  df-recs 7453  df-rdg 7491  df-1o 7545  df-oadd 7549  df-er 7727  df-en 7941  df-dom 7942  df-sdom 7943  df-fin 7944  df-sup 8333  df-oi 8400  df-card 8750  df-pnf 10061  df-mnf 10062  df-xr 10063  df-ltxr 10064  df-le 10065  df-sub 10253  df-neg 10254  df-div 10670  df-nn 11006  df-2 11064  df-3 11065  df-n0 11278  df-z 11363  df-uz 11673  df-rp 11818  df-ico 12166  df-fz 12312  df-fzo 12450  df-seq 12785  df-exp 12844  df-hash 13101  df-cj 13820  df-re 13821  df-im 13822  df-sqrt 13956  df-abs 13957  df-clim 14200  df-prod 14617
This theorem is referenced by:  fprodle  14708  hoiprodcl  40524  hoiprodcl3  40557  hoidmvcl  40559  hsphoidmvle2  40562  hsphoidmvle  40563
  Copyright terms: Public domain W3C validator