MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fprodmul Structured version   Visualization version   GIF version

Theorem fprodmul 14615
Description: The product of two finite products. (Contributed by Scott Fenton, 14-Dec-2017.)
Hypotheses
Ref Expression
fprodmul.1 (𝜑𝐴 ∈ Fin)
fprodmul.2 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
fprodmul.3 ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)
Assertion
Ref Expression
fprodmul (𝜑 → ∏𝑘𝐴 (𝐵 · 𝐶) = (∏𝑘𝐴 𝐵 · ∏𝑘𝐴 𝐶))
Distinct variable groups:   𝐴,𝑘   𝜑,𝑘
Allowed substitution hints:   𝐵(𝑘)   𝐶(𝑘)

Proof of Theorem fprodmul
Dummy variables 𝑓 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1t1e1 11119 . . . . 5 (1 · 1) = 1
2 prod0 14598 . . . . . 6 𝑘 ∈ ∅ 𝐵 = 1
3 prod0 14598 . . . . . 6 𝑘 ∈ ∅ 𝐶 = 1
42, 3oveq12i 6616 . . . . 5 (∏𝑘 ∈ ∅ 𝐵 · ∏𝑘 ∈ ∅ 𝐶) = (1 · 1)
5 prod0 14598 . . . . 5 𝑘 ∈ ∅ (𝐵 · 𝐶) = 1
61, 4, 53eqtr4ri 2654 . . . 4 𝑘 ∈ ∅ (𝐵 · 𝐶) = (∏𝑘 ∈ ∅ 𝐵 · ∏𝑘 ∈ ∅ 𝐶)
7 prodeq1 14564 . . . 4 (𝐴 = ∅ → ∏𝑘𝐴 (𝐵 · 𝐶) = ∏𝑘 ∈ ∅ (𝐵 · 𝐶))
8 prodeq1 14564 . . . . 5 (𝐴 = ∅ → ∏𝑘𝐴 𝐵 = ∏𝑘 ∈ ∅ 𝐵)
9 prodeq1 14564 . . . . 5 (𝐴 = ∅ → ∏𝑘𝐴 𝐶 = ∏𝑘 ∈ ∅ 𝐶)
108, 9oveq12d 6622 . . . 4 (𝐴 = ∅ → (∏𝑘𝐴 𝐵 · ∏𝑘𝐴 𝐶) = (∏𝑘 ∈ ∅ 𝐵 · ∏𝑘 ∈ ∅ 𝐶))
116, 7, 103eqtr4a 2681 . . 3 (𝐴 = ∅ → ∏𝑘𝐴 (𝐵 · 𝐶) = (∏𝑘𝐴 𝐵 · ∏𝑘𝐴 𝐶))
1211a1i 11 . 2 (𝜑 → (𝐴 = ∅ → ∏𝑘𝐴 (𝐵 · 𝐶) = (∏𝑘𝐴 𝐵 · ∏𝑘𝐴 𝐶)))
13 simprl 793 . . . . . . . . 9 ((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto𝐴)) → (#‘𝐴) ∈ ℕ)
14 nnuz 11667 . . . . . . . . 9 ℕ = (ℤ‘1)
1513, 14syl6eleq 2708 . . . . . . . 8 ((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto𝐴)) → (#‘𝐴) ∈ (ℤ‘1))
16 fprodmul.2 . . . . . . . . . . . 12 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
17 eqid 2621 . . . . . . . . . . . 12 (𝑘𝐴𝐵) = (𝑘𝐴𝐵)
1816, 17fmptd 6340 . . . . . . . . . . 11 (𝜑 → (𝑘𝐴𝐵):𝐴⟶ℂ)
1918adantr 481 . . . . . . . . . 10 ((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto𝐴)) → (𝑘𝐴𝐵):𝐴⟶ℂ)
20 f1of 6094 . . . . . . . . . . 11 (𝑓:(1...(#‘𝐴))–1-1-onto𝐴𝑓:(1...(#‘𝐴))⟶𝐴)
2120ad2antll 764 . . . . . . . . . 10 ((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto𝐴)) → 𝑓:(1...(#‘𝐴))⟶𝐴)
22 fco 6015 . . . . . . . . . 10 (((𝑘𝐴𝐵):𝐴⟶ℂ ∧ 𝑓:(1...(#‘𝐴))⟶𝐴) → ((𝑘𝐴𝐵) ∘ 𝑓):(1...(#‘𝐴))⟶ℂ)
2319, 21, 22syl2anc 692 . . . . . . . . 9 ((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto𝐴)) → ((𝑘𝐴𝐵) ∘ 𝑓):(1...(#‘𝐴))⟶ℂ)
2423ffvelrnda 6315 . . . . . . . 8 (((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (1...(#‘𝐴))) → (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑛) ∈ ℂ)
25 fprodmul.3 . . . . . . . . . . . 12 ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)
26 eqid 2621 . . . . . . . . . . . 12 (𝑘𝐴𝐶) = (𝑘𝐴𝐶)
2725, 26fmptd 6340 . . . . . . . . . . 11 (𝜑 → (𝑘𝐴𝐶):𝐴⟶ℂ)
2827adantr 481 . . . . . . . . . 10 ((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto𝐴)) → (𝑘𝐴𝐶):𝐴⟶ℂ)
29 fco 6015 . . . . . . . . . 10 (((𝑘𝐴𝐶):𝐴⟶ℂ ∧ 𝑓:(1...(#‘𝐴))⟶𝐴) → ((𝑘𝐴𝐶) ∘ 𝑓):(1...(#‘𝐴))⟶ℂ)
3028, 21, 29syl2anc 692 . . . . . . . . 9 ((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto𝐴)) → ((𝑘𝐴𝐶) ∘ 𝑓):(1...(#‘𝐴))⟶ℂ)
3130ffvelrnda 6315 . . . . . . . 8 (((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (1...(#‘𝐴))) → (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑛) ∈ ℂ)
3221ffvelrnda 6315 . . . . . . . . . 10 (((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (1...(#‘𝐴))) → (𝑓𝑛) ∈ 𝐴)
33 simpr 477 . . . . . . . . . . . . . 14 ((𝜑𝑘𝐴) → 𝑘𝐴)
3416, 25mulcld 10004 . . . . . . . . . . . . . 14 ((𝜑𝑘𝐴) → (𝐵 · 𝐶) ∈ ℂ)
35 eqid 2621 . . . . . . . . . . . . . . 15 (𝑘𝐴 ↦ (𝐵 · 𝐶)) = (𝑘𝐴 ↦ (𝐵 · 𝐶))
3635fvmpt2 6248 . . . . . . . . . . . . . 14 ((𝑘𝐴 ∧ (𝐵 · 𝐶) ∈ ℂ) → ((𝑘𝐴 ↦ (𝐵 · 𝐶))‘𝑘) = (𝐵 · 𝐶))
3733, 34, 36syl2anc 692 . . . . . . . . . . . . 13 ((𝜑𝑘𝐴) → ((𝑘𝐴 ↦ (𝐵 · 𝐶))‘𝑘) = (𝐵 · 𝐶))
3817fvmpt2 6248 . . . . . . . . . . . . . . 15 ((𝑘𝐴𝐵 ∈ ℂ) → ((𝑘𝐴𝐵)‘𝑘) = 𝐵)
3933, 16, 38syl2anc 692 . . . . . . . . . . . . . 14 ((𝜑𝑘𝐴) → ((𝑘𝐴𝐵)‘𝑘) = 𝐵)
4026fvmpt2 6248 . . . . . . . . . . . . . . 15 ((𝑘𝐴𝐶 ∈ ℂ) → ((𝑘𝐴𝐶)‘𝑘) = 𝐶)
4133, 25, 40syl2anc 692 . . . . . . . . . . . . . 14 ((𝜑𝑘𝐴) → ((𝑘𝐴𝐶)‘𝑘) = 𝐶)
4239, 41oveq12d 6622 . . . . . . . . . . . . 13 ((𝜑𝑘𝐴) → (((𝑘𝐴𝐵)‘𝑘) · ((𝑘𝐴𝐶)‘𝑘)) = (𝐵 · 𝐶))
4337, 42eqtr4d 2658 . . . . . . . . . . . 12 ((𝜑𝑘𝐴) → ((𝑘𝐴 ↦ (𝐵 · 𝐶))‘𝑘) = (((𝑘𝐴𝐵)‘𝑘) · ((𝑘𝐴𝐶)‘𝑘)))
4443ralrimiva 2960 . . . . . . . . . . 11 (𝜑 → ∀𝑘𝐴 ((𝑘𝐴 ↦ (𝐵 · 𝐶))‘𝑘) = (((𝑘𝐴𝐵)‘𝑘) · ((𝑘𝐴𝐶)‘𝑘)))
4544ad2antrr 761 . . . . . . . . . 10 (((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (1...(#‘𝐴))) → ∀𝑘𝐴 ((𝑘𝐴 ↦ (𝐵 · 𝐶))‘𝑘) = (((𝑘𝐴𝐵)‘𝑘) · ((𝑘𝐴𝐶)‘𝑘)))
46 nffvmpt1 6156 . . . . . . . . . . . 12 𝑘((𝑘𝐴 ↦ (𝐵 · 𝐶))‘(𝑓𝑛))
47 nffvmpt1 6156 . . . . . . . . . . . . 13 𝑘((𝑘𝐴𝐵)‘(𝑓𝑛))
48 nfcv 2761 . . . . . . . . . . . . 13 𝑘 ·
49 nffvmpt1 6156 . . . . . . . . . . . . 13 𝑘((𝑘𝐴𝐶)‘(𝑓𝑛))
5047, 48, 49nfov 6630 . . . . . . . . . . . 12 𝑘(((𝑘𝐴𝐵)‘(𝑓𝑛)) · ((𝑘𝐴𝐶)‘(𝑓𝑛)))
5146, 50nfeq 2772 . . . . . . . . . . 11 𝑘((𝑘𝐴 ↦ (𝐵 · 𝐶))‘(𝑓𝑛)) = (((𝑘𝐴𝐵)‘(𝑓𝑛)) · ((𝑘𝐴𝐶)‘(𝑓𝑛)))
52 fveq2 6148 . . . . . . . . . . . 12 (𝑘 = (𝑓𝑛) → ((𝑘𝐴 ↦ (𝐵 · 𝐶))‘𝑘) = ((𝑘𝐴 ↦ (𝐵 · 𝐶))‘(𝑓𝑛)))
53 fveq2 6148 . . . . . . . . . . . . 13 (𝑘 = (𝑓𝑛) → ((𝑘𝐴𝐵)‘𝑘) = ((𝑘𝐴𝐵)‘(𝑓𝑛)))
54 fveq2 6148 . . . . . . . . . . . . 13 (𝑘 = (𝑓𝑛) → ((𝑘𝐴𝐶)‘𝑘) = ((𝑘𝐴𝐶)‘(𝑓𝑛)))
5553, 54oveq12d 6622 . . . . . . . . . . . 12 (𝑘 = (𝑓𝑛) → (((𝑘𝐴𝐵)‘𝑘) · ((𝑘𝐴𝐶)‘𝑘)) = (((𝑘𝐴𝐵)‘(𝑓𝑛)) · ((𝑘𝐴𝐶)‘(𝑓𝑛))))
5652, 55eqeq12d 2636 . . . . . . . . . . 11 (𝑘 = (𝑓𝑛) → (((𝑘𝐴 ↦ (𝐵 · 𝐶))‘𝑘) = (((𝑘𝐴𝐵)‘𝑘) · ((𝑘𝐴𝐶)‘𝑘)) ↔ ((𝑘𝐴 ↦ (𝐵 · 𝐶))‘(𝑓𝑛)) = (((𝑘𝐴𝐵)‘(𝑓𝑛)) · ((𝑘𝐴𝐶)‘(𝑓𝑛)))))
5751, 56rspc 3289 . . . . . . . . . 10 ((𝑓𝑛) ∈ 𝐴 → (∀𝑘𝐴 ((𝑘𝐴 ↦ (𝐵 · 𝐶))‘𝑘) = (((𝑘𝐴𝐵)‘𝑘) · ((𝑘𝐴𝐶)‘𝑘)) → ((𝑘𝐴 ↦ (𝐵 · 𝐶))‘(𝑓𝑛)) = (((𝑘𝐴𝐵)‘(𝑓𝑛)) · ((𝑘𝐴𝐶)‘(𝑓𝑛)))))
5832, 45, 57sylc 65 . . . . . . . . 9 (((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (1...(#‘𝐴))) → ((𝑘𝐴 ↦ (𝐵 · 𝐶))‘(𝑓𝑛)) = (((𝑘𝐴𝐵)‘(𝑓𝑛)) · ((𝑘𝐴𝐶)‘(𝑓𝑛))))
59 fvco3 6232 . . . . . . . . . 10 ((𝑓:(1...(#‘𝐴))⟶𝐴𝑛 ∈ (1...(#‘𝐴))) → (((𝑘𝐴 ↦ (𝐵 · 𝐶)) ∘ 𝑓)‘𝑛) = ((𝑘𝐴 ↦ (𝐵 · 𝐶))‘(𝑓𝑛)))
6021, 59sylan 488 . . . . . . . . 9 (((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (1...(#‘𝐴))) → (((𝑘𝐴 ↦ (𝐵 · 𝐶)) ∘ 𝑓)‘𝑛) = ((𝑘𝐴 ↦ (𝐵 · 𝐶))‘(𝑓𝑛)))
61 fvco3 6232 . . . . . . . . . . 11 ((𝑓:(1...(#‘𝐴))⟶𝐴𝑛 ∈ (1...(#‘𝐴))) → (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑛) = ((𝑘𝐴𝐵)‘(𝑓𝑛)))
6221, 61sylan 488 . . . . . . . . . 10 (((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (1...(#‘𝐴))) → (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑛) = ((𝑘𝐴𝐵)‘(𝑓𝑛)))
63 fvco3 6232 . . . . . . . . . . 11 ((𝑓:(1...(#‘𝐴))⟶𝐴𝑛 ∈ (1...(#‘𝐴))) → (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑛) = ((𝑘𝐴𝐶)‘(𝑓𝑛)))
6421, 63sylan 488 . . . . . . . . . 10 (((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (1...(#‘𝐴))) → (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑛) = ((𝑘𝐴𝐶)‘(𝑓𝑛)))
6562, 64oveq12d 6622 . . . . . . . . 9 (((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (1...(#‘𝐴))) → ((((𝑘𝐴𝐵) ∘ 𝑓)‘𝑛) · (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑛)) = (((𝑘𝐴𝐵)‘(𝑓𝑛)) · ((𝑘𝐴𝐶)‘(𝑓𝑛))))
6658, 60, 653eqtr4d 2665 . . . . . . . 8 (((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (1...(#‘𝐴))) → (((𝑘𝐴 ↦ (𝐵 · 𝐶)) ∘ 𝑓)‘𝑛) = ((((𝑘𝐴𝐵) ∘ 𝑓)‘𝑛) · (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑛)))
6715, 24, 31, 66prodfmul 14547 . . . . . . 7 ((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto𝐴)) → (seq1( · , ((𝑘𝐴 ↦ (𝐵 · 𝐶)) ∘ 𝑓))‘(#‘𝐴)) = ((seq1( · , ((𝑘𝐴𝐵) ∘ 𝑓))‘(#‘𝐴)) · (seq1( · , ((𝑘𝐴𝐶) ∘ 𝑓))‘(#‘𝐴))))
68 fveq2 6148 . . . . . . . 8 (𝑚 = (𝑓𝑛) → ((𝑘𝐴 ↦ (𝐵 · 𝐶))‘𝑚) = ((𝑘𝐴 ↦ (𝐵 · 𝐶))‘(𝑓𝑛)))
69 simprr 795 . . . . . . . 8 ((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto𝐴)) → 𝑓:(1...(#‘𝐴))–1-1-onto𝐴)
7034, 35fmptd 6340 . . . . . . . . . 10 (𝜑 → (𝑘𝐴 ↦ (𝐵 · 𝐶)):𝐴⟶ℂ)
7170adantr 481 . . . . . . . . 9 ((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto𝐴)) → (𝑘𝐴 ↦ (𝐵 · 𝐶)):𝐴⟶ℂ)
7271ffvelrnda 6315 . . . . . . . 8 (((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto𝐴)) ∧ 𝑚𝐴) → ((𝑘𝐴 ↦ (𝐵 · 𝐶))‘𝑚) ∈ ℂ)
7368, 13, 69, 72, 60fprod 14596 . . . . . . 7 ((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto𝐴)) → ∏𝑚𝐴 ((𝑘𝐴 ↦ (𝐵 · 𝐶))‘𝑚) = (seq1( · , ((𝑘𝐴 ↦ (𝐵 · 𝐶)) ∘ 𝑓))‘(#‘𝐴)))
74 fveq2 6148 . . . . . . . . 9 (𝑚 = (𝑓𝑛) → ((𝑘𝐴𝐵)‘𝑚) = ((𝑘𝐴𝐵)‘(𝑓𝑛)))
7519ffvelrnda 6315 . . . . . . . . 9 (((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto𝐴)) ∧ 𝑚𝐴) → ((𝑘𝐴𝐵)‘𝑚) ∈ ℂ)
7674, 13, 69, 75, 62fprod 14596 . . . . . . . 8 ((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto𝐴)) → ∏𝑚𝐴 ((𝑘𝐴𝐵)‘𝑚) = (seq1( · , ((𝑘𝐴𝐵) ∘ 𝑓))‘(#‘𝐴)))
77 fveq2 6148 . . . . . . . . 9 (𝑚 = (𝑓𝑛) → ((𝑘𝐴𝐶)‘𝑚) = ((𝑘𝐴𝐶)‘(𝑓𝑛)))
7828ffvelrnda 6315 . . . . . . . . 9 (((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto𝐴)) ∧ 𝑚𝐴) → ((𝑘𝐴𝐶)‘𝑚) ∈ ℂ)
7977, 13, 69, 78, 64fprod 14596 . . . . . . . 8 ((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto𝐴)) → ∏𝑚𝐴 ((𝑘𝐴𝐶)‘𝑚) = (seq1( · , ((𝑘𝐴𝐶) ∘ 𝑓))‘(#‘𝐴)))
8076, 79oveq12d 6622 . . . . . . 7 ((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto𝐴)) → (∏𝑚𝐴 ((𝑘𝐴𝐵)‘𝑚) · ∏𝑚𝐴 ((𝑘𝐴𝐶)‘𝑚)) = ((seq1( · , ((𝑘𝐴𝐵) ∘ 𝑓))‘(#‘𝐴)) · (seq1( · , ((𝑘𝐴𝐶) ∘ 𝑓))‘(#‘𝐴))))
8167, 73, 803eqtr4d 2665 . . . . . 6 ((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto𝐴)) → ∏𝑚𝐴 ((𝑘𝐴 ↦ (𝐵 · 𝐶))‘𝑚) = (∏𝑚𝐴 ((𝑘𝐴𝐵)‘𝑚) · ∏𝑚𝐴 ((𝑘𝐴𝐶)‘𝑚)))
82 prodfc 14600 . . . . . 6 𝑚𝐴 ((𝑘𝐴 ↦ (𝐵 · 𝐶))‘𝑚) = ∏𝑘𝐴 (𝐵 · 𝐶)
83 prodfc 14600 . . . . . . 7 𝑚𝐴 ((𝑘𝐴𝐵)‘𝑚) = ∏𝑘𝐴 𝐵
84 prodfc 14600 . . . . . . 7 𝑚𝐴 ((𝑘𝐴𝐶)‘𝑚) = ∏𝑘𝐴 𝐶
8583, 84oveq12i 6616 . . . . . 6 (∏𝑚𝐴 ((𝑘𝐴𝐵)‘𝑚) · ∏𝑚𝐴 ((𝑘𝐴𝐶)‘𝑚)) = (∏𝑘𝐴 𝐵 · ∏𝑘𝐴 𝐶)
8681, 82, 853eqtr3g 2678 . . . . 5 ((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto𝐴)) → ∏𝑘𝐴 (𝐵 · 𝐶) = (∏𝑘𝐴 𝐵 · ∏𝑘𝐴 𝐶))
8786expr 642 . . . 4 ((𝜑 ∧ (#‘𝐴) ∈ ℕ) → (𝑓:(1...(#‘𝐴))–1-1-onto𝐴 → ∏𝑘𝐴 (𝐵 · 𝐶) = (∏𝑘𝐴 𝐵 · ∏𝑘𝐴 𝐶)))
8887exlimdv 1858 . . 3 ((𝜑 ∧ (#‘𝐴) ∈ ℕ) → (∃𝑓 𝑓:(1...(#‘𝐴))–1-1-onto𝐴 → ∏𝑘𝐴 (𝐵 · 𝐶) = (∏𝑘𝐴 𝐵 · ∏𝑘𝐴 𝐶)))
8988expimpd 628 . 2 (𝜑 → (((#‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(#‘𝐴))–1-1-onto𝐴) → ∏𝑘𝐴 (𝐵 · 𝐶) = (∏𝑘𝐴 𝐵 · ∏𝑘𝐴 𝐶)))
90 fprodmul.1 . . 3 (𝜑𝐴 ∈ Fin)
91 fz1f1o 14374 . . 3 (𝐴 ∈ Fin → (𝐴 = ∅ ∨ ((#‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(#‘𝐴))–1-1-onto𝐴)))
9290, 91syl 17 . 2 (𝜑 → (𝐴 = ∅ ∨ ((#‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(#‘𝐴))–1-1-onto𝐴)))
9312, 89, 92mpjaod 396 1 (𝜑 → ∏𝑘𝐴 (𝐵 · 𝐶) = (∏𝑘𝐴 𝐵 · ∏𝑘𝐴 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 383  wa 384   = wceq 1480  wex 1701  wcel 1987  wral 2907  c0 3891  cmpt 4673  ccom 5078  wf 5843  1-1-ontowf1o 5846  cfv 5847  (class class class)co 6604  Fincfn 7899  cc 9878  1c1 9881   · cmul 9885  cn 10964  cuz 11631  ...cfz 12268  seqcseq 12741  #chash 13057  cprod 14560
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-inf2 8482  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-se 5034  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-isom 5856  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-oadd 7509  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-sup 8292  df-oi 8359  df-card 8709  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-3 11024  df-n0 11237  df-z 11322  df-uz 11632  df-rp 11777  df-fz 12269  df-fzo 12407  df-seq 12742  df-exp 12801  df-hash 13058  df-cj 13773  df-re 13774  df-im 13775  df-sqrt 13909  df-abs 13910  df-clim 14153  df-prod 14561
This theorem is referenced by:  fprodsplit  14621  risefallfac  14680  gausslemma2dlem5  24996  gausslemma2dlem6  24997  bcprod  31332
  Copyright terms: Public domain W3C validator