MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fpwwe2 Structured version   Visualization version   GIF version

Theorem fpwwe2 9425
Description: Given any function 𝐹 from well-orderings of subsets of 𝐴 to 𝐴, there is a unique well-ordered subset 𝑋, (𝑊𝑋)⟩ which "agrees" with 𝐹 in the sense that each initial segment maps to its upper bound, and such that the entire set maps to an element of the set (so that it cannot be extended without losing the well-ordering). This theorem can be used to prove dfac8a 8813. Theorem 1.1 of [KanamoriPincus] p. 415. (Contributed by Mario Carneiro, 18-May-2015.)
Hypotheses
Ref Expression
fpwwe2.1 𝑊 = {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 [(𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦))}
fpwwe2.2 (𝜑𝐴 ∈ V)
fpwwe2.3 ((𝜑 ∧ (𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)) → (𝑥𝐹𝑟) ∈ 𝐴)
fpwwe2.4 𝑋 = dom 𝑊
Assertion
Ref Expression
fpwwe2 (𝜑 → ((𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌) ↔ (𝑌 = 𝑋𝑅 = (𝑊𝑋))))
Distinct variable groups:   𝑦,𝑢,𝑟,𝑥,𝐹   𝑋,𝑟,𝑢,𝑥,𝑦   𝜑,𝑟,𝑢,𝑥,𝑦   𝐴,𝑟,𝑥   𝑅,𝑟,𝑢,𝑥,𝑦   𝑌,𝑟,𝑢,𝑥,𝑦   𝑊,𝑟,𝑢,𝑥,𝑦
Allowed substitution hints:   𝐴(𝑦,𝑢)

Proof of Theorem fpwwe2
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fpwwe2.1 . . . . . . . . . . 11 𝑊 = {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 [(𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦))}
2 fpwwe2.2 . . . . . . . . . . 11 (𝜑𝐴 ∈ V)
3 fpwwe2.3 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)) → (𝑥𝐹𝑟) ∈ 𝐴)
4 fpwwe2.4 . . . . . . . . . . 11 𝑋 = dom 𝑊
51, 2, 3, 4fpwwe2lem11 9422 . . . . . . . . . 10 (𝜑𝑊:dom 𝑊⟶𝒫 (𝑋 × 𝑋))
6 ffun 6015 . . . . . . . . . 10 (𝑊:dom 𝑊⟶𝒫 (𝑋 × 𝑋) → Fun 𝑊)
75, 6syl 17 . . . . . . . . 9 (𝜑 → Fun 𝑊)
8 funbrfv2b 6207 . . . . . . . . 9 (Fun 𝑊 → (𝑌𝑊𝑅 ↔ (𝑌 ∈ dom 𝑊 ∧ (𝑊𝑌) = 𝑅)))
97, 8syl 17 . . . . . . . 8 (𝜑 → (𝑌𝑊𝑅 ↔ (𝑌 ∈ dom 𝑊 ∧ (𝑊𝑌) = 𝑅)))
109simprbda 652 . . . . . . 7 ((𝜑𝑌𝑊𝑅) → 𝑌 ∈ dom 𝑊)
1110adantrr 752 . . . . . 6 ((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) → 𝑌 ∈ dom 𝑊)
12 elssuni 4440 . . . . . . 7 (𝑌 ∈ dom 𝑊𝑌 dom 𝑊)
1312, 4syl6sseqr 3637 . . . . . 6 (𝑌 ∈ dom 𝑊𝑌𝑋)
1411, 13syl 17 . . . . 5 ((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) → 𝑌𝑋)
15 simpl 473 . . . . . . 7 ((𝑋𝑌 ∧ (𝑊𝑋) = (𝑅 ∩ (𝑌 × 𝑋))) → 𝑋𝑌)
1615a1i 11 . . . . . 6 ((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) → ((𝑋𝑌 ∧ (𝑊𝑋) = (𝑅 ∩ (𝑌 × 𝑋))) → 𝑋𝑌))
17 simplrr 800 . . . . . . . . 9 (((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) → (𝑌𝐹𝑅) ∈ 𝑌)
182adantr 481 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) → 𝐴 ∈ V)
1918adantr 481 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) → 𝐴 ∈ V)
201, 2, 3, 4fpwwe2lem12 9423 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑋 ∈ dom 𝑊)
21 funfvbrb 6296 . . . . . . . . . . . . . . . . . . . 20 (Fun 𝑊 → (𝑋 ∈ dom 𝑊𝑋𝑊(𝑊𝑋)))
227, 21syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑋 ∈ dom 𝑊𝑋𝑊(𝑊𝑋)))
2320, 22mpbid 222 . . . . . . . . . . . . . . . . . 18 (𝜑𝑋𝑊(𝑊𝑋))
241, 2fpwwe2lem2 9414 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑋𝑊(𝑊𝑋) ↔ ((𝑋𝐴 ∧ (𝑊𝑋) ⊆ (𝑋 × 𝑋)) ∧ ((𝑊𝑋) We 𝑋 ∧ ∀𝑦𝑋 [((𝑊𝑋) “ {𝑦}) / 𝑢](𝑢𝐹((𝑊𝑋) ∩ (𝑢 × 𝑢))) = 𝑦))))
2523, 24mpbid 222 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝑋𝐴 ∧ (𝑊𝑋) ⊆ (𝑋 × 𝑋)) ∧ ((𝑊𝑋) We 𝑋 ∧ ∀𝑦𝑋 [((𝑊𝑋) “ {𝑦}) / 𝑢](𝑢𝐹((𝑊𝑋) ∩ (𝑢 × 𝑢))) = 𝑦)))
2625ad2antrr 761 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) → ((𝑋𝐴 ∧ (𝑊𝑋) ⊆ (𝑋 × 𝑋)) ∧ ((𝑊𝑋) We 𝑋 ∧ ∀𝑦𝑋 [((𝑊𝑋) “ {𝑦}) / 𝑢](𝑢𝐹((𝑊𝑋) ∩ (𝑢 × 𝑢))) = 𝑦)))
2726simpld 475 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) → (𝑋𝐴 ∧ (𝑊𝑋) ⊆ (𝑋 × 𝑋)))
2827simpld 475 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) → 𝑋𝐴)
2919, 28ssexd 4775 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) → 𝑋 ∈ V)
30 difexg 4778 . . . . . . . . . . . . 13 (𝑋 ∈ V → (𝑋𝑌) ∈ V)
3129, 30syl 17 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) → (𝑋𝑌) ∈ V)
3226simprd 479 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) → ((𝑊𝑋) We 𝑋 ∧ ∀𝑦𝑋 [((𝑊𝑋) “ {𝑦}) / 𝑢](𝑢𝐹((𝑊𝑋) ∩ (𝑢 × 𝑢))) = 𝑦))
3332simpld 475 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) → (𝑊𝑋) We 𝑋)
34 wefr 5074 . . . . . . . . . . . . 13 ((𝑊𝑋) We 𝑋 → (𝑊𝑋) Fr 𝑋)
3533, 34syl 17 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) → (𝑊𝑋) Fr 𝑋)
36 difssd 3722 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) → (𝑋𝑌) ⊆ 𝑋)
37 fri 5046 . . . . . . . . . . . . 13 ((((𝑋𝑌) ∈ V ∧ (𝑊𝑋) Fr 𝑋) ∧ ((𝑋𝑌) ⊆ 𝑋 ∧ (𝑋𝑌) ≠ ∅)) → ∃𝑧 ∈ (𝑋𝑌)∀𝑤 ∈ (𝑋𝑌) ¬ 𝑤(𝑊𝑋)𝑧)
3837expr 642 . . . . . . . . . . . 12 ((((𝑋𝑌) ∈ V ∧ (𝑊𝑋) Fr 𝑋) ∧ (𝑋𝑌) ⊆ 𝑋) → ((𝑋𝑌) ≠ ∅ → ∃𝑧 ∈ (𝑋𝑌)∀𝑤 ∈ (𝑋𝑌) ¬ 𝑤(𝑊𝑋)𝑧))
3931, 35, 36, 38syl21anc 1322 . . . . . . . . . . 11 (((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) → ((𝑋𝑌) ≠ ∅ → ∃𝑧 ∈ (𝑋𝑌)∀𝑤 ∈ (𝑋𝑌) ¬ 𝑤(𝑊𝑋)𝑧))
40 ssdif0 3922 . . . . . . . . . . . . . . 15 ((𝑋 ∩ ((𝑊𝑋) “ {𝑧})) ⊆ 𝑌 ↔ ((𝑋 ∩ ((𝑊𝑋) “ {𝑧})) ∖ 𝑌) = ∅)
41 indif1 3853 . . . . . . . . . . . . . . . 16 ((𝑋𝑌) ∩ ((𝑊𝑋) “ {𝑧})) = ((𝑋 ∩ ((𝑊𝑋) “ {𝑧})) ∖ 𝑌)
4241eqeq1i 2626 . . . . . . . . . . . . . . 15 (((𝑋𝑌) ∩ ((𝑊𝑋) “ {𝑧})) = ∅ ↔ ((𝑋 ∩ ((𝑊𝑋) “ {𝑧})) ∖ 𝑌) = ∅)
43 disj 3995 . . . . . . . . . . . . . . . 16 (((𝑋𝑌) ∩ ((𝑊𝑋) “ {𝑧})) = ∅ ↔ ∀𝑤 ∈ (𝑋𝑌) ¬ 𝑤 ∈ ((𝑊𝑋) “ {𝑧}))
44 vex 3193 . . . . . . . . . . . . . . . . . . 19 𝑧 ∈ V
45 vex 3193 . . . . . . . . . . . . . . . . . . . 20 𝑤 ∈ V
4645eliniseg 5463 . . . . . . . . . . . . . . . . . . 19 (𝑧 ∈ V → (𝑤 ∈ ((𝑊𝑋) “ {𝑧}) ↔ 𝑤(𝑊𝑋)𝑧))
4744, 46ax-mp 5 . . . . . . . . . . . . . . . . . 18 (𝑤 ∈ ((𝑊𝑋) “ {𝑧}) ↔ 𝑤(𝑊𝑋)𝑧)
4847notbii 310 . . . . . . . . . . . . . . . . 17 𝑤 ∈ ((𝑊𝑋) “ {𝑧}) ↔ ¬ 𝑤(𝑊𝑋)𝑧)
4948ralbii 2976 . . . . . . . . . . . . . . . 16 (∀𝑤 ∈ (𝑋𝑌) ¬ 𝑤 ∈ ((𝑊𝑋) “ {𝑧}) ↔ ∀𝑤 ∈ (𝑋𝑌) ¬ 𝑤(𝑊𝑋)𝑧)
5043, 49bitri 264 . . . . . . . . . . . . . . 15 (((𝑋𝑌) ∩ ((𝑊𝑋) “ {𝑧})) = ∅ ↔ ∀𝑤 ∈ (𝑋𝑌) ¬ 𝑤(𝑊𝑋)𝑧)
5140, 42, 503bitr2i 288 . . . . . . . . . . . . . 14 ((𝑋 ∩ ((𝑊𝑋) “ {𝑧})) ⊆ 𝑌 ↔ ∀𝑤 ∈ (𝑋𝑌) ¬ 𝑤(𝑊𝑋)𝑧)
52 cnvimass 5454 . . . . . . . . . . . . . . . . 17 ((𝑊𝑋) “ {𝑧}) ⊆ dom (𝑊𝑋)
5327simprd 479 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) → (𝑊𝑋) ⊆ (𝑋 × 𝑋))
54 dmss 5293 . . . . . . . . . . . . . . . . . . 19 ((𝑊𝑋) ⊆ (𝑋 × 𝑋) → dom (𝑊𝑋) ⊆ dom (𝑋 × 𝑋))
5553, 54syl 17 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) → dom (𝑊𝑋) ⊆ dom (𝑋 × 𝑋))
56 dmxpid 5315 . . . . . . . . . . . . . . . . . 18 dom (𝑋 × 𝑋) = 𝑋
5755, 56syl6sseq 3636 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) → dom (𝑊𝑋) ⊆ 𝑋)
5852, 57syl5ss 3599 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) → ((𝑊𝑋) “ {𝑧}) ⊆ 𝑋)
59 sseqin2 3801 . . . . . . . . . . . . . . . 16 (((𝑊𝑋) “ {𝑧}) ⊆ 𝑋 ↔ (𝑋 ∩ ((𝑊𝑋) “ {𝑧})) = ((𝑊𝑋) “ {𝑧}))
6058, 59sylib 208 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) → (𝑋 ∩ ((𝑊𝑋) “ {𝑧})) = ((𝑊𝑋) “ {𝑧}))
6160sseq1d 3617 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) → ((𝑋 ∩ ((𝑊𝑋) “ {𝑧})) ⊆ 𝑌 ↔ ((𝑊𝑋) “ {𝑧}) ⊆ 𝑌))
6251, 61syl5bbr 274 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) → (∀𝑤 ∈ (𝑋𝑌) ¬ 𝑤(𝑊𝑋)𝑧 ↔ ((𝑊𝑋) “ {𝑧}) ⊆ 𝑌))
6362rexbidv 3047 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) → (∃𝑧 ∈ (𝑋𝑌)∀𝑤 ∈ (𝑋𝑌) ¬ 𝑤(𝑊𝑋)𝑧 ↔ ∃𝑧 ∈ (𝑋𝑌)((𝑊𝑋) “ {𝑧}) ⊆ 𝑌))
64 eldifn 3717 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑧 ∈ (𝑋𝑌) → ¬ 𝑧𝑌)
6564ad2antrl 763 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋𝑌) ∧ ((𝑊𝑋) “ {𝑧}) ⊆ 𝑌)) → ¬ 𝑧𝑌)
66 eleq1 2686 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑤 = 𝑧 → (𝑤𝑌𝑧𝑌))
6766notbid 308 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑤 = 𝑧 → (¬ 𝑤𝑌 ↔ ¬ 𝑧𝑌))
6865, 67syl5ibrcom 237 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋𝑌) ∧ ((𝑊𝑋) “ {𝑧}) ⊆ 𝑌)) → (𝑤 = 𝑧 → ¬ 𝑤𝑌))
6968con2d 129 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋𝑌) ∧ ((𝑊𝑋) “ {𝑧}) ⊆ 𝑌)) → (𝑤𝑌 → ¬ 𝑤 = 𝑧))
7069imp 445 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋𝑌) ∧ ((𝑊𝑋) “ {𝑧}) ⊆ 𝑌)) ∧ 𝑤𝑌) → ¬ 𝑤 = 𝑧)
7165adantr 481 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋𝑌) ∧ ((𝑊𝑋) “ {𝑧}) ⊆ 𝑌)) ∧ 𝑤𝑌) → ¬ 𝑧𝑌)
72 simprr 795 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) → 𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))
7372ad2antrr 761 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋𝑌) ∧ ((𝑊𝑋) “ {𝑧}) ⊆ 𝑌)) ∧ 𝑤𝑌) → 𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))
7473breqd 4634 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋𝑌) ∧ ((𝑊𝑋) “ {𝑧}) ⊆ 𝑌)) ∧ 𝑤𝑌) → (𝑧𝑅𝑤𝑧((𝑊𝑋) ∩ (𝑋 × 𝑌))𝑤))
75 eldifi 3716 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑧 ∈ (𝑋𝑌) → 𝑧𝑋)
7675ad2antrl 763 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋𝑌) ∧ ((𝑊𝑋) “ {𝑧}) ⊆ 𝑌)) → 𝑧𝑋)
7776adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋𝑌) ∧ ((𝑊𝑋) “ {𝑧}) ⊆ 𝑌)) ∧ 𝑤𝑌) → 𝑧𝑋)
78 simpr 477 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋𝑌) ∧ ((𝑊𝑋) “ {𝑧}) ⊆ 𝑌)) ∧ 𝑤𝑌) → 𝑤𝑌)
79 brxp 5117 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑧(𝑋 × 𝑌)𝑤 ↔ (𝑧𝑋𝑤𝑌))
8077, 78, 79sylanbrc 697 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋𝑌) ∧ ((𝑊𝑋) “ {𝑧}) ⊆ 𝑌)) ∧ 𝑤𝑌) → 𝑧(𝑋 × 𝑌)𝑤)
81 brin 4674 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑧((𝑊𝑋) ∩ (𝑋 × 𝑌))𝑤 ↔ (𝑧(𝑊𝑋)𝑤𝑧(𝑋 × 𝑌)𝑤))
8281rbaib 946 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑧(𝑋 × 𝑌)𝑤 → (𝑧((𝑊𝑋) ∩ (𝑋 × 𝑌))𝑤𝑧(𝑊𝑋)𝑤))
8380, 82syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋𝑌) ∧ ((𝑊𝑋) “ {𝑧}) ⊆ 𝑌)) ∧ 𝑤𝑌) → (𝑧((𝑊𝑋) ∩ (𝑋 × 𝑌))𝑤𝑧(𝑊𝑋)𝑤))
8474, 83bitrd 268 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋𝑌) ∧ ((𝑊𝑋) “ {𝑧}) ⊆ 𝑌)) ∧ 𝑤𝑌) → (𝑧𝑅𝑤𝑧(𝑊𝑋)𝑤))
851, 2fpwwe2lem2 9414 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝜑 → (𝑌𝑊𝑅 ↔ ((𝑌𝐴𝑅 ⊆ (𝑌 × 𝑌)) ∧ (𝑅 We 𝑌 ∧ ∀𝑦𝑌 [(𝑅 “ {𝑦}) / 𝑢](𝑢𝐹(𝑅 ∩ (𝑢 × 𝑢))) = 𝑦))))
8685biimpa 501 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑌𝑊𝑅) → ((𝑌𝐴𝑅 ⊆ (𝑌 × 𝑌)) ∧ (𝑅 We 𝑌 ∧ ∀𝑦𝑌 [(𝑅 “ {𝑦}) / 𝑢](𝑢𝐹(𝑅 ∩ (𝑢 × 𝑢))) = 𝑦)))
8786adantrr 752 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) → ((𝑌𝐴𝑅 ⊆ (𝑌 × 𝑌)) ∧ (𝑅 We 𝑌 ∧ ∀𝑦𝑌 [(𝑅 “ {𝑦}) / 𝑢](𝑢𝐹(𝑅 ∩ (𝑢 × 𝑢))) = 𝑦)))
8887simpld 475 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) → (𝑌𝐴𝑅 ⊆ (𝑌 × 𝑌)))
8988simprd 479 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) → 𝑅 ⊆ (𝑌 × 𝑌))
9089ad3antrrr 765 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋𝑌) ∧ ((𝑊𝑋) “ {𝑧}) ⊆ 𝑌)) ∧ 𝑤𝑌) → 𝑅 ⊆ (𝑌 × 𝑌))
9190ssbrd 4666 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋𝑌) ∧ ((𝑊𝑋) “ {𝑧}) ⊆ 𝑌)) ∧ 𝑤𝑌) → (𝑧𝑅𝑤𝑧(𝑌 × 𝑌)𝑤))
92 brxp 5117 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑧(𝑌 × 𝑌)𝑤 ↔ (𝑧𝑌𝑤𝑌))
9392simplbi 476 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑧(𝑌 × 𝑌)𝑤𝑧𝑌)
9491, 93syl6 35 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋𝑌) ∧ ((𝑊𝑋) “ {𝑧}) ⊆ 𝑌)) ∧ 𝑤𝑌) → (𝑧𝑅𝑤𝑧𝑌))
9584, 94sylbird 250 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋𝑌) ∧ ((𝑊𝑋) “ {𝑧}) ⊆ 𝑌)) ∧ 𝑤𝑌) → (𝑧(𝑊𝑋)𝑤𝑧𝑌))
9671, 95mtod 189 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋𝑌) ∧ ((𝑊𝑋) “ {𝑧}) ⊆ 𝑌)) ∧ 𝑤𝑌) → ¬ 𝑧(𝑊𝑋)𝑤)
9733ad2antrr 761 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋𝑌) ∧ ((𝑊𝑋) “ {𝑧}) ⊆ 𝑌)) ∧ 𝑤𝑌) → (𝑊𝑋) We 𝑋)
98 weso 5075 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑊𝑋) We 𝑋 → (𝑊𝑋) Or 𝑋)
9997, 98syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋𝑌) ∧ ((𝑊𝑋) “ {𝑧}) ⊆ 𝑌)) ∧ 𝑤𝑌) → (𝑊𝑋) Or 𝑋)
10014ad2antrr 761 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋𝑌) ∧ ((𝑊𝑋) “ {𝑧}) ⊆ 𝑌)) → 𝑌𝑋)
101100sselda 3588 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋𝑌) ∧ ((𝑊𝑋) “ {𝑧}) ⊆ 𝑌)) ∧ 𝑤𝑌) → 𝑤𝑋)
102 sotric 5031 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑊𝑋) Or 𝑋 ∧ (𝑤𝑋𝑧𝑋)) → (𝑤(𝑊𝑋)𝑧 ↔ ¬ (𝑤 = 𝑧𝑧(𝑊𝑋)𝑤)))
103 ioran 511 . . . . . . . . . . . . . . . . . . . . . . 23 (¬ (𝑤 = 𝑧𝑧(𝑊𝑋)𝑤) ↔ (¬ 𝑤 = 𝑧 ∧ ¬ 𝑧(𝑊𝑋)𝑤))
104102, 103syl6bb 276 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑊𝑋) Or 𝑋 ∧ (𝑤𝑋𝑧𝑋)) → (𝑤(𝑊𝑋)𝑧 ↔ (¬ 𝑤 = 𝑧 ∧ ¬ 𝑧(𝑊𝑋)𝑤)))
10599, 101, 77, 104syl12anc 1321 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋𝑌) ∧ ((𝑊𝑋) “ {𝑧}) ⊆ 𝑌)) ∧ 𝑤𝑌) → (𝑤(𝑊𝑋)𝑧 ↔ (¬ 𝑤 = 𝑧 ∧ ¬ 𝑧(𝑊𝑋)𝑤)))
10670, 96, 105mpbir2and 956 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋𝑌) ∧ ((𝑊𝑋) “ {𝑧}) ⊆ 𝑌)) ∧ 𝑤𝑌) → 𝑤(𝑊𝑋)𝑧)
107106, 47sylibr 224 . . . . . . . . . . . . . . . . . . 19 (((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋𝑌) ∧ ((𝑊𝑋) “ {𝑧}) ⊆ 𝑌)) ∧ 𝑤𝑌) → 𝑤 ∈ ((𝑊𝑋) “ {𝑧}))
108107ex 450 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋𝑌) ∧ ((𝑊𝑋) “ {𝑧}) ⊆ 𝑌)) → (𝑤𝑌𝑤 ∈ ((𝑊𝑋) “ {𝑧})))
109108ssrdv 3594 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋𝑌) ∧ ((𝑊𝑋) “ {𝑧}) ⊆ 𝑌)) → 𝑌 ⊆ ((𝑊𝑋) “ {𝑧}))
110 simprr 795 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋𝑌) ∧ ((𝑊𝑋) “ {𝑧}) ⊆ 𝑌)) → ((𝑊𝑋) “ {𝑧}) ⊆ 𝑌)
111109, 110eqssd 3605 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋𝑌) ∧ ((𝑊𝑋) “ {𝑧}) ⊆ 𝑌)) → 𝑌 = ((𝑊𝑋) “ {𝑧}))
112 in32 3809 . . . . . . . . . . . . . . . . . 18 (((𝑊𝑋) ∩ (𝑋 × 𝑌)) ∩ (𝑌 × 𝑌)) = (((𝑊𝑋) ∩ (𝑌 × 𝑌)) ∩ (𝑋 × 𝑌))
113 simplrr 800 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋𝑌) ∧ ((𝑊𝑋) “ {𝑧}) ⊆ 𝑌)) → 𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))
114113ineq1d 3797 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋𝑌) ∧ ((𝑊𝑋) “ {𝑧}) ⊆ 𝑌)) → (𝑅 ∩ (𝑌 × 𝑌)) = (((𝑊𝑋) ∩ (𝑋 × 𝑌)) ∩ (𝑌 × 𝑌)))
11589ad2antrr 761 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋𝑌) ∧ ((𝑊𝑋) “ {𝑧}) ⊆ 𝑌)) → 𝑅 ⊆ (𝑌 × 𝑌))
116 df-ss 3574 . . . . . . . . . . . . . . . . . . . 20 (𝑅 ⊆ (𝑌 × 𝑌) ↔ (𝑅 ∩ (𝑌 × 𝑌)) = 𝑅)
117115, 116sylib 208 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋𝑌) ∧ ((𝑊𝑋) “ {𝑧}) ⊆ 𝑌)) → (𝑅 ∩ (𝑌 × 𝑌)) = 𝑅)
118114, 117eqtr3d 2657 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋𝑌) ∧ ((𝑊𝑋) “ {𝑧}) ⊆ 𝑌)) → (((𝑊𝑋) ∩ (𝑋 × 𝑌)) ∩ (𝑌 × 𝑌)) = 𝑅)
119 inss2 3818 . . . . . . . . . . . . . . . . . . . 20 ((𝑊𝑋) ∩ (𝑌 × 𝑌)) ⊆ (𝑌 × 𝑌)
120 xpss1 5199 . . . . . . . . . . . . . . . . . . . . 21 (𝑌𝑋 → (𝑌 × 𝑌) ⊆ (𝑋 × 𝑌))
121100, 120syl 17 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋𝑌) ∧ ((𝑊𝑋) “ {𝑧}) ⊆ 𝑌)) → (𝑌 × 𝑌) ⊆ (𝑋 × 𝑌))
122119, 121syl5ss 3599 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋𝑌) ∧ ((𝑊𝑋) “ {𝑧}) ⊆ 𝑌)) → ((𝑊𝑋) ∩ (𝑌 × 𝑌)) ⊆ (𝑋 × 𝑌))
123 df-ss 3574 . . . . . . . . . . . . . . . . . . 19 (((𝑊𝑋) ∩ (𝑌 × 𝑌)) ⊆ (𝑋 × 𝑌) ↔ (((𝑊𝑋) ∩ (𝑌 × 𝑌)) ∩ (𝑋 × 𝑌)) = ((𝑊𝑋) ∩ (𝑌 × 𝑌)))
124122, 123sylib 208 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋𝑌) ∧ ((𝑊𝑋) “ {𝑧}) ⊆ 𝑌)) → (((𝑊𝑋) ∩ (𝑌 × 𝑌)) ∩ (𝑋 × 𝑌)) = ((𝑊𝑋) ∩ (𝑌 × 𝑌)))
125112, 118, 1243eqtr3a 2679 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋𝑌) ∧ ((𝑊𝑋) “ {𝑧}) ⊆ 𝑌)) → 𝑅 = ((𝑊𝑋) ∩ (𝑌 × 𝑌)))
126111sqxpeqd 5111 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋𝑌) ∧ ((𝑊𝑋) “ {𝑧}) ⊆ 𝑌)) → (𝑌 × 𝑌) = (((𝑊𝑋) “ {𝑧}) × ((𝑊𝑋) “ {𝑧})))
127126ineq2d 3798 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋𝑌) ∧ ((𝑊𝑋) “ {𝑧}) ⊆ 𝑌)) → ((𝑊𝑋) ∩ (𝑌 × 𝑌)) = ((𝑊𝑋) ∩ (((𝑊𝑋) “ {𝑧}) × ((𝑊𝑋) “ {𝑧}))))
128125, 127eqtrd 2655 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋𝑌) ∧ ((𝑊𝑋) “ {𝑧}) ⊆ 𝑌)) → 𝑅 = ((𝑊𝑋) ∩ (((𝑊𝑋) “ {𝑧}) × ((𝑊𝑋) “ {𝑧}))))
129111, 128oveq12d 6633 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋𝑌) ∧ ((𝑊𝑋) “ {𝑧}) ⊆ 𝑌)) → (𝑌𝐹𝑅) = (((𝑊𝑋) “ {𝑧})𝐹((𝑊𝑋) ∩ (((𝑊𝑋) “ {𝑧}) × ((𝑊𝑋) “ {𝑧})))))
13019adantr 481 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋𝑌) ∧ ((𝑊𝑋) “ {𝑧}) ⊆ 𝑌)) → 𝐴 ∈ V)
13123adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) → 𝑋𝑊(𝑊𝑋))
132131ad2antrr 761 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋𝑌) ∧ ((𝑊𝑋) “ {𝑧}) ⊆ 𝑌)) → 𝑋𝑊(𝑊𝑋))
1331, 130, 132fpwwe2lem3 9415 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋𝑌) ∧ ((𝑊𝑋) “ {𝑧}) ⊆ 𝑌)) ∧ 𝑧𝑋) → (((𝑊𝑋) “ {𝑧})𝐹((𝑊𝑋) ∩ (((𝑊𝑋) “ {𝑧}) × ((𝑊𝑋) “ {𝑧})))) = 𝑧)
13476, 133mpdan 701 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋𝑌) ∧ ((𝑊𝑋) “ {𝑧}) ⊆ 𝑌)) → (((𝑊𝑋) “ {𝑧})𝐹((𝑊𝑋) ∩ (((𝑊𝑋) “ {𝑧}) × ((𝑊𝑋) “ {𝑧})))) = 𝑧)
135129, 134eqtrd 2655 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋𝑌) ∧ ((𝑊𝑋) “ {𝑧}) ⊆ 𝑌)) → (𝑌𝐹𝑅) = 𝑧)
136135, 65eqneltrd 2717 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋𝑌) ∧ ((𝑊𝑋) “ {𝑧}) ⊆ 𝑌)) → ¬ (𝑌𝐹𝑅) ∈ 𝑌)
137136rexlimdvaa 3027 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) → (∃𝑧 ∈ (𝑋𝑌)((𝑊𝑋) “ {𝑧}) ⊆ 𝑌 → ¬ (𝑌𝐹𝑅) ∈ 𝑌))
13863, 137sylbid 230 . . . . . . . . . . 11 (((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) → (∃𝑧 ∈ (𝑋𝑌)∀𝑤 ∈ (𝑋𝑌) ¬ 𝑤(𝑊𝑋)𝑧 → ¬ (𝑌𝐹𝑅) ∈ 𝑌))
13939, 138syld 47 . . . . . . . . . 10 (((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) → ((𝑋𝑌) ≠ ∅ → ¬ (𝑌𝐹𝑅) ∈ 𝑌))
140139necon4ad 2809 . . . . . . . . 9 (((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) → ((𝑌𝐹𝑅) ∈ 𝑌 → (𝑋𝑌) = ∅))
14117, 140mpd 15 . . . . . . . 8 (((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) → (𝑋𝑌) = ∅)
142 ssdif0 3922 . . . . . . . 8 (𝑋𝑌 ↔ (𝑋𝑌) = ∅)
143141, 142sylibr 224 . . . . . . 7 (((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) → 𝑋𝑌)
144143ex 450 . . . . . 6 ((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) → ((𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌))) → 𝑋𝑌))
1453adantlr 750 . . . . . . 7 (((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)) → (𝑥𝐹𝑟) ∈ 𝐴)
146 simprl 793 . . . . . . 7 ((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) → 𝑌𝑊𝑅)
1471, 18, 145, 131, 146fpwwe2lem10 9421 . . . . . 6 ((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) → ((𝑋𝑌 ∧ (𝑊𝑋) = (𝑅 ∩ (𝑌 × 𝑋))) ∨ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))))
14816, 144, 147mpjaod 396 . . . . 5 ((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) → 𝑋𝑌)
14914, 148eqssd 3605 . . . 4 ((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) → 𝑌 = 𝑋)
1507adantr 481 . . . . . 6 ((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) → Fun 𝑊)
151149, 146eqbrtrrd 4647 . . . . . 6 ((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) → 𝑋𝑊𝑅)
152 funbrfv 6201 . . . . . 6 (Fun 𝑊 → (𝑋𝑊𝑅 → (𝑊𝑋) = 𝑅))
153150, 151, 152sylc 65 . . . . 5 ((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) → (𝑊𝑋) = 𝑅)
154153eqcomd 2627 . . . 4 ((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) → 𝑅 = (𝑊𝑋))
155149, 154jca 554 . . 3 ((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) → (𝑌 = 𝑋𝑅 = (𝑊𝑋)))
156155ex 450 . 2 (𝜑 → ((𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌) → (𝑌 = 𝑋𝑅 = (𝑊𝑋))))
1571, 2, 3, 4fpwwe2lem13 9424 . . . 4 (𝜑 → (𝑋𝐹(𝑊𝑋)) ∈ 𝑋)
15823, 157jca 554 . . 3 (𝜑 → (𝑋𝑊(𝑊𝑋) ∧ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋))
159 breq12 4628 . . . 4 ((𝑌 = 𝑋𝑅 = (𝑊𝑋)) → (𝑌𝑊𝑅𝑋𝑊(𝑊𝑋)))
160 oveq12 6624 . . . . 5 ((𝑌 = 𝑋𝑅 = (𝑊𝑋)) → (𝑌𝐹𝑅) = (𝑋𝐹(𝑊𝑋)))
161 simpl 473 . . . . 5 ((𝑌 = 𝑋𝑅 = (𝑊𝑋)) → 𝑌 = 𝑋)
162160, 161eleq12d 2692 . . . 4 ((𝑌 = 𝑋𝑅 = (𝑊𝑋)) → ((𝑌𝐹𝑅) ∈ 𝑌 ↔ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋))
163159, 162anbi12d 746 . . 3 ((𝑌 = 𝑋𝑅 = (𝑊𝑋)) → ((𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌) ↔ (𝑋𝑊(𝑊𝑋) ∧ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋)))
164158, 163syl5ibrcom 237 . 2 (𝜑 → ((𝑌 = 𝑋𝑅 = (𝑊𝑋)) → (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)))
165156, 164impbid 202 1 (𝜑 → ((𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌) ↔ (𝑌 = 𝑋𝑅 = (𝑊𝑋))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384  w3a 1036   = wceq 1480  wcel 1987  wne 2790  wral 2908  wrex 2909  Vcvv 3190  [wsbc 3422  cdif 3557  cin 3559  wss 3560  c0 3897  𝒫 cpw 4136  {csn 4155   cuni 4409   class class class wbr 4623  {copab 4682   Or wor 5004   Fr wfr 5040   We wwe 5042   × cxp 5082  ccnv 5083  dom cdm 5084  cima 5087  Fun wfun 5851  wf 5853  cfv 5857  (class class class)co 6615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4741  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2913  df-rex 2914  df-reu 2915  df-rmo 2916  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-tp 4160  df-op 4162  df-uni 4410  df-iun 4494  df-br 4624  df-opab 4684  df-mpt 4685  df-tr 4723  df-eprel 4995  df-id 4999  df-po 5005  df-so 5006  df-fr 5043  df-se 5044  df-we 5045  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-pred 5649  df-ord 5695  df-on 5696  df-lim 5697  df-suc 5698  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-isom 5866  df-riota 6576  df-ov 6618  df-wrecs 7367  df-recs 7428  df-oi 8375
This theorem is referenced by:  fpwwe  9428  canthwelem  9432  pwfseqlem4  9444
  Copyright terms: Public domain W3C validator