MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fpwwe2lem5 Structured version   Visualization version   GIF version

Theorem fpwwe2lem5 10055
Description: Lemma for fpwwe2 10064. (Contributed by Mario Carneiro, 15-May-2015.)
Hypotheses
Ref Expression
fpwwe2.1 𝑊 = {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 [(𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦))}
fpwwe2.2 (𝜑𝐴 ∈ V)
fpwwe2.3 ((𝜑 ∧ (𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)) → (𝑥𝐹𝑟) ∈ 𝐴)
Assertion
Ref Expression
fpwwe2lem5 ((𝜑 ∧ (𝑋𝐴𝑅 ⊆ (𝑋 × 𝑋) ∧ 𝑅 We 𝑋)) → (𝑋𝐹𝑅) ∈ 𝐴)
Distinct variable groups:   𝑦,𝑢,𝑟,𝑥,𝐹   𝑋,𝑟,𝑢,𝑥,𝑦   𝜑,𝑟,𝑢,𝑥,𝑦   𝐴,𝑟,𝑥   𝑅,𝑟,𝑢,𝑥,𝑦   𝑊,𝑟,𝑢,𝑥,𝑦
Allowed substitution hints:   𝐴(𝑦,𝑢)

Proof of Theorem fpwwe2lem5
StepHypRef Expression
1 fpwwe2.2 . . . . 5 (𝜑𝐴 ∈ V)
21adantr 483 . . . 4 ((𝜑 ∧ (𝑋𝐴𝑅 ⊆ (𝑋 × 𝑋) ∧ 𝑅 We 𝑋)) → 𝐴 ∈ V)
3 simpr1 1190 . . . 4 ((𝜑 ∧ (𝑋𝐴𝑅 ⊆ (𝑋 × 𝑋) ∧ 𝑅 We 𝑋)) → 𝑋𝐴)
42, 3ssexd 5227 . . 3 ((𝜑 ∧ (𝑋𝐴𝑅 ⊆ (𝑋 × 𝑋) ∧ 𝑅 We 𝑋)) → 𝑋 ∈ V)
54, 4xpexd 7473 . . . 4 ((𝜑 ∧ (𝑋𝐴𝑅 ⊆ (𝑋 × 𝑋) ∧ 𝑅 We 𝑋)) → (𝑋 × 𝑋) ∈ V)
6 simpr2 1191 . . . 4 ((𝜑 ∧ (𝑋𝐴𝑅 ⊆ (𝑋 × 𝑋) ∧ 𝑅 We 𝑋)) → 𝑅 ⊆ (𝑋 × 𝑋))
75, 6ssexd 5227 . . 3 ((𝜑 ∧ (𝑋𝐴𝑅 ⊆ (𝑋 × 𝑋) ∧ 𝑅 We 𝑋)) → 𝑅 ∈ V)
84, 7jca 514 . 2 ((𝜑 ∧ (𝑋𝐴𝑅 ⊆ (𝑋 × 𝑋) ∧ 𝑅 We 𝑋)) → (𝑋 ∈ V ∧ 𝑅 ∈ V))
9 sseq1 3991 . . . . . 6 (𝑥 = 𝑋 → (𝑥𝐴𝑋𝐴))
10 xpeq12 5579 . . . . . . . 8 ((𝑥 = 𝑋𝑥 = 𝑋) → (𝑥 × 𝑥) = (𝑋 × 𝑋))
1110anidms 569 . . . . . . 7 (𝑥 = 𝑋 → (𝑥 × 𝑥) = (𝑋 × 𝑋))
1211sseq2d 3998 . . . . . 6 (𝑥 = 𝑋 → (𝑟 ⊆ (𝑥 × 𝑥) ↔ 𝑟 ⊆ (𝑋 × 𝑋)))
13 weeq2 5543 . . . . . 6 (𝑥 = 𝑋 → (𝑟 We 𝑥𝑟 We 𝑋))
149, 12, 133anbi123d 1432 . . . . 5 (𝑥 = 𝑋 → ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥) ↔ (𝑋𝐴𝑟 ⊆ (𝑋 × 𝑋) ∧ 𝑟 We 𝑋)))
1514anbi2d 630 . . . 4 (𝑥 = 𝑋 → ((𝜑 ∧ (𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)) ↔ (𝜑 ∧ (𝑋𝐴𝑟 ⊆ (𝑋 × 𝑋) ∧ 𝑟 We 𝑋))))
16 oveq1 7162 . . . . 5 (𝑥 = 𝑋 → (𝑥𝐹𝑟) = (𝑋𝐹𝑟))
1716eleq1d 2897 . . . 4 (𝑥 = 𝑋 → ((𝑥𝐹𝑟) ∈ 𝐴 ↔ (𝑋𝐹𝑟) ∈ 𝐴))
1815, 17imbi12d 347 . . 3 (𝑥 = 𝑋 → (((𝜑 ∧ (𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)) → (𝑥𝐹𝑟) ∈ 𝐴) ↔ ((𝜑 ∧ (𝑋𝐴𝑟 ⊆ (𝑋 × 𝑋) ∧ 𝑟 We 𝑋)) → (𝑋𝐹𝑟) ∈ 𝐴)))
19 sseq1 3991 . . . . . 6 (𝑟 = 𝑅 → (𝑟 ⊆ (𝑋 × 𝑋) ↔ 𝑅 ⊆ (𝑋 × 𝑋)))
20 weeq1 5542 . . . . . 6 (𝑟 = 𝑅 → (𝑟 We 𝑋𝑅 We 𝑋))
2119, 203anbi23d 1435 . . . . 5 (𝑟 = 𝑅 → ((𝑋𝐴𝑟 ⊆ (𝑋 × 𝑋) ∧ 𝑟 We 𝑋) ↔ (𝑋𝐴𝑅 ⊆ (𝑋 × 𝑋) ∧ 𝑅 We 𝑋)))
2221anbi2d 630 . . . 4 (𝑟 = 𝑅 → ((𝜑 ∧ (𝑋𝐴𝑟 ⊆ (𝑋 × 𝑋) ∧ 𝑟 We 𝑋)) ↔ (𝜑 ∧ (𝑋𝐴𝑅 ⊆ (𝑋 × 𝑋) ∧ 𝑅 We 𝑋))))
23 oveq2 7163 . . . . 5 (𝑟 = 𝑅 → (𝑋𝐹𝑟) = (𝑋𝐹𝑅))
2423eleq1d 2897 . . . 4 (𝑟 = 𝑅 → ((𝑋𝐹𝑟) ∈ 𝐴 ↔ (𝑋𝐹𝑅) ∈ 𝐴))
2522, 24imbi12d 347 . . 3 (𝑟 = 𝑅 → (((𝜑 ∧ (𝑋𝐴𝑟 ⊆ (𝑋 × 𝑋) ∧ 𝑟 We 𝑋)) → (𝑋𝐹𝑟) ∈ 𝐴) ↔ ((𝜑 ∧ (𝑋𝐴𝑅 ⊆ (𝑋 × 𝑋) ∧ 𝑅 We 𝑋)) → (𝑋𝐹𝑅) ∈ 𝐴)))
26 fpwwe2.3 . . 3 ((𝜑 ∧ (𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)) → (𝑥𝐹𝑟) ∈ 𝐴)
2718, 25, 26vtocl2g 3571 . 2 ((𝑋 ∈ V ∧ 𝑅 ∈ V) → ((𝜑 ∧ (𝑋𝐴𝑅 ⊆ (𝑋 × 𝑋) ∧ 𝑅 We 𝑋)) → (𝑋𝐹𝑅) ∈ 𝐴))
288, 27mpcom 38 1 ((𝜑 ∧ (𝑋𝐴𝑅 ⊆ (𝑋 × 𝑋) ∧ 𝑅 We 𝑋)) → (𝑋𝐹𝑅) ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1533  wcel 2110  wral 3138  Vcvv 3494  [wsbc 3771  cin 3934  wss 3935  {csn 4566  {copab 5127   We wwe 5512   × cxp 5552  ccnv 5553  cima 5557  (class class class)co 7155
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4838  df-br 5066  df-opab 5128  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-iota 6313  df-fv 6362  df-ov 7158
This theorem is referenced by:  fpwwe2lem13  10063
  Copyright terms: Public domain W3C validator