MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frcond1 Structured version   Visualization version   GIF version

Theorem frcond1 28044
Description: The friendship condition: any two (different) vertices in a friendship graph have a unique common neighbor. (Contributed by Alexander van der Vekens, 19-Dec-2017.) (Revised by AV, 29-Mar-2021.)
Hypotheses
Ref Expression
frcond1.v 𝑉 = (Vtx‘𝐺)
frcond1.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
frcond1 (𝐺 ∈ FriendGraph → ((𝐴𝑉𝐶𝑉𝐴𝐶) → ∃!𝑏𝑉 {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸))
Distinct variable groups:   𝐴,𝑏   𝐶,𝑏   𝐸,𝑏   𝐺,𝑏   𝑉,𝑏

Proof of Theorem frcond1
Dummy variables 𝑘 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frcond1.v . . 3 𝑉 = (Vtx‘𝐺)
2 frcond1.e . . 3 𝐸 = (Edg‘𝐺)
31, 2isfrgr 28038 . 2 (𝐺 ∈ FriendGraph ↔ (𝐺 ∈ USGraph ∧ ∀𝑘𝑉𝑙 ∈ (𝑉 ∖ {𝑘})∃!𝑏𝑉 {{𝑏, 𝑘}, {𝑏, 𝑙}} ⊆ 𝐸))
4 preq2 4669 . . . . . . 7 (𝑘 = 𝐴 → {𝑏, 𝑘} = {𝑏, 𝐴})
54preq1d 4674 . . . . . 6 (𝑘 = 𝐴 → {{𝑏, 𝑘}, {𝑏, 𝑙}} = {{𝑏, 𝐴}, {𝑏, 𝑙}})
65sseq1d 3997 . . . . 5 (𝑘 = 𝐴 → ({{𝑏, 𝑘}, {𝑏, 𝑙}} ⊆ 𝐸 ↔ {{𝑏, 𝐴}, {𝑏, 𝑙}} ⊆ 𝐸))
76reubidv 3389 . . . 4 (𝑘 = 𝐴 → (∃!𝑏𝑉 {{𝑏, 𝑘}, {𝑏, 𝑙}} ⊆ 𝐸 ↔ ∃!𝑏𝑉 {{𝑏, 𝐴}, {𝑏, 𝑙}} ⊆ 𝐸))
8 preq2 4669 . . . . . . 7 (𝑙 = 𝐶 → {𝑏, 𝑙} = {𝑏, 𝐶})
98preq2d 4675 . . . . . 6 (𝑙 = 𝐶 → {{𝑏, 𝐴}, {𝑏, 𝑙}} = {{𝑏, 𝐴}, {𝑏, 𝐶}})
109sseq1d 3997 . . . . 5 (𝑙 = 𝐶 → ({{𝑏, 𝐴}, {𝑏, 𝑙}} ⊆ 𝐸 ↔ {{𝑏, 𝐴}, {𝑏, 𝐶}} ⊆ 𝐸))
1110reubidv 3389 . . . 4 (𝑙 = 𝐶 → (∃!𝑏𝑉 {{𝑏, 𝐴}, {𝑏, 𝑙}} ⊆ 𝐸 ↔ ∃!𝑏𝑉 {{𝑏, 𝐴}, {𝑏, 𝐶}} ⊆ 𝐸))
12 simp1 1132 . . . 4 ((𝐴𝑉𝐶𝑉𝐴𝐶) → 𝐴𝑉)
13 sneq 4576 . . . . . 6 (𝑘 = 𝐴 → {𝑘} = {𝐴})
1413difeq2d 4098 . . . . 5 (𝑘 = 𝐴 → (𝑉 ∖ {𝑘}) = (𝑉 ∖ {𝐴}))
1514adantl 484 . . . 4 (((𝐴𝑉𝐶𝑉𝐴𝐶) ∧ 𝑘 = 𝐴) → (𝑉 ∖ {𝑘}) = (𝑉 ∖ {𝐴}))
16 necom 3069 . . . . . . . 8 (𝐴𝐶𝐶𝐴)
1716biimpi 218 . . . . . . 7 (𝐴𝐶𝐶𝐴)
1817anim2i 618 . . . . . 6 ((𝐶𝑉𝐴𝐶) → (𝐶𝑉𝐶𝐴))
19183adant1 1126 . . . . 5 ((𝐴𝑉𝐶𝑉𝐴𝐶) → (𝐶𝑉𝐶𝐴))
20 eldifsn 4718 . . . . 5 (𝐶 ∈ (𝑉 ∖ {𝐴}) ↔ (𝐶𝑉𝐶𝐴))
2119, 20sylibr 236 . . . 4 ((𝐴𝑉𝐶𝑉𝐴𝐶) → 𝐶 ∈ (𝑉 ∖ {𝐴}))
227, 11, 12, 15, 21rspc2vd 3931 . . 3 ((𝐴𝑉𝐶𝑉𝐴𝐶) → (∀𝑘𝑉𝑙 ∈ (𝑉 ∖ {𝑘})∃!𝑏𝑉 {{𝑏, 𝑘}, {𝑏, 𝑙}} ⊆ 𝐸 → ∃!𝑏𝑉 {{𝑏, 𝐴}, {𝑏, 𝐶}} ⊆ 𝐸))
23 prcom 4667 . . . . . . 7 {𝑏, 𝐴} = {𝐴, 𝑏}
2423preq1i 4671 . . . . . 6 {{𝑏, 𝐴}, {𝑏, 𝐶}} = {{𝐴, 𝑏}, {𝑏, 𝐶}}
2524sseq1i 3994 . . . . 5 ({{𝑏, 𝐴}, {𝑏, 𝐶}} ⊆ 𝐸 ↔ {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸)
2625reubii 3391 . . . 4 (∃!𝑏𝑉 {{𝑏, 𝐴}, {𝑏, 𝐶}} ⊆ 𝐸 ↔ ∃!𝑏𝑉 {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸)
2726biimpi 218 . . 3 (∃!𝑏𝑉 {{𝑏, 𝐴}, {𝑏, 𝐶}} ⊆ 𝐸 → ∃!𝑏𝑉 {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸)
2822, 27syl6com 37 . 2 (∀𝑘𝑉𝑙 ∈ (𝑉 ∖ {𝑘})∃!𝑏𝑉 {{𝑏, 𝑘}, {𝑏, 𝑙}} ⊆ 𝐸 → ((𝐴𝑉𝐶𝑉𝐴𝐶) → ∃!𝑏𝑉 {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸))
293, 28simplbiim 507 1 (𝐺 ∈ FriendGraph → ((𝐴𝑉𝐶𝑉𝐴𝐶) → ∃!𝑏𝑉 {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1533  wcel 2110  wne 3016  wral 3138  ∃!wreu 3140  cdif 3932  wss 3935  {csn 4566  {cpr 4568  cfv 6354  Vtxcvtx 26780  Edgcedg 26831  USGraphcusgr 26933   FriendGraph cfrgr 28036
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-nul 5209
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4838  df-br 5066  df-iota 6313  df-fv 6362  df-frgr 28037
This theorem is referenced by:  frcond2  28045  frcond3  28047  4cyclusnfrgr  28070  frgrncvvdeqlem2  28078
  Copyright terms: Public domain W3C validator