![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > frege102d | Structured version Visualization version GIF version |
Description: If either 𝐴 and 𝐶 are the same or 𝐶 follows 𝐴 in the transitive closure of 𝑅 and 𝐵 is the successor to 𝐶, then 𝐵 follows 𝐴 in the transitive closure of 𝑅. Similar to Proposition 102 of [Frege1879] p. 72. Compare with frege102 38576. (Contributed by RP, 15-Jul-2020.) |
Ref | Expression |
---|---|
frege102d.r | ⊢ (𝜑 → 𝑅 ∈ V) |
frege102d.a | ⊢ (𝜑 → 𝐴 ∈ V) |
frege102d.b | ⊢ (𝜑 → 𝐵 ∈ V) |
frege102d.c | ⊢ (𝜑 → 𝐶 ∈ V) |
frege102d.ac | ⊢ (𝜑 → (𝐴(t+‘𝑅)𝐶 ∨ 𝐴 = 𝐶)) |
frege102d.cb | ⊢ (𝜑 → 𝐶𝑅𝐵) |
Ref | Expression |
---|---|
frege102d | ⊢ (𝜑 → 𝐴(t+‘𝑅)𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frege102d.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ V) | |
2 | 1 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐴(t+‘𝑅)𝐶) → 𝑅 ∈ V) |
3 | frege102d.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ V) | |
4 | 3 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐴(t+‘𝑅)𝐶) → 𝐴 ∈ V) |
5 | frege102d.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ V) | |
6 | 5 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐴(t+‘𝑅)𝐶) → 𝐵 ∈ V) |
7 | frege102d.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ V) | |
8 | 7 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐴(t+‘𝑅)𝐶) → 𝐶 ∈ V) |
9 | simpr 476 | . . 3 ⊢ ((𝜑 ∧ 𝐴(t+‘𝑅)𝐶) → 𝐴(t+‘𝑅)𝐶) | |
10 | frege102d.cb | . . . 4 ⊢ (𝜑 → 𝐶𝑅𝐵) | |
11 | 10 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐴(t+‘𝑅)𝐶) → 𝐶𝑅𝐵) |
12 | 2, 4, 6, 8, 9, 11 | frege96d 38358 | . 2 ⊢ ((𝜑 ∧ 𝐴(t+‘𝑅)𝐶) → 𝐴(t+‘𝑅)𝐵) |
13 | 1 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐴 = 𝐶) → 𝑅 ∈ V) |
14 | simpr 476 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 = 𝐶) → 𝐴 = 𝐶) | |
15 | 10 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 = 𝐶) → 𝐶𝑅𝐵) |
16 | 14, 15 | eqbrtrd 4707 | . . 3 ⊢ ((𝜑 ∧ 𝐴 = 𝐶) → 𝐴𝑅𝐵) |
17 | 13, 16 | frege91d 38360 | . 2 ⊢ ((𝜑 ∧ 𝐴 = 𝐶) → 𝐴(t+‘𝑅)𝐵) |
18 | frege102d.ac | . 2 ⊢ (𝜑 → (𝐴(t+‘𝑅)𝐶 ∨ 𝐴 = 𝐶)) | |
19 | 12, 17, 18 | mpjaodan 844 | 1 ⊢ (𝜑 → 𝐴(t+‘𝑅)𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 382 ∧ wa 383 = wceq 1523 ∈ wcel 2030 Vcvv 3231 class class class wbr 4685 ‘cfv 5926 t+ctcl 13770 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-sbc 3469 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-int 4508 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-iota 5889 df-fun 5928 df-fv 5934 df-trcl 13772 |
This theorem is referenced by: frege108d 38365 |
Copyright terms: Public domain | W3C validator |