Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege131d Structured version   Visualization version   GIF version

Theorem frege131d 37537
Description: If 𝐹 is a function and 𝐴 contains all elements of 𝑈 and all elements before or after those elements of 𝑈 in the transitive closure of 𝐹, then the image under 𝐹 of 𝐴 is a subclass of 𝐴. Similar to Proposition 131 of [Frege1879] p. 85. Compare with frege131 37770. (Contributed by RP, 17-Jul-2020.)
Hypotheses
Ref Expression
frege131d.f (𝜑𝐹 ∈ V)
frege131d.a (𝜑𝐴 = (𝑈 ∪ (((t+‘𝐹) “ 𝑈) ∪ ((t+‘𝐹) “ 𝑈))))
frege131d.fun (𝜑 → Fun 𝐹)
Assertion
Ref Expression
frege131d (𝜑 → (𝐹𝐴) ⊆ 𝐴)

Proof of Theorem frege131d
StepHypRef Expression
1 frege131d.f . . . . 5 (𝜑𝐹 ∈ V)
2 trclfvlb 13683 . . . . 5 (𝐹 ∈ V → 𝐹 ⊆ (t+‘𝐹))
3 imass1 5459 . . . . 5 (𝐹 ⊆ (t+‘𝐹) → (𝐹𝑈) ⊆ ((t+‘𝐹) “ 𝑈))
41, 2, 33syl 18 . . . 4 (𝜑 → (𝐹𝑈) ⊆ ((t+‘𝐹) “ 𝑈))
5 ssun2 3755 . . . . 5 ((t+‘𝐹) “ 𝑈) ⊆ (((t+‘𝐹) “ 𝑈) ∪ ((t+‘𝐹) “ 𝑈))
6 ssun2 3755 . . . . 5 (((t+‘𝐹) “ 𝑈) ∪ ((t+‘𝐹) “ 𝑈)) ⊆ (𝑈 ∪ (((t+‘𝐹) “ 𝑈) ∪ ((t+‘𝐹) “ 𝑈)))
75, 6sstri 3592 . . . 4 ((t+‘𝐹) “ 𝑈) ⊆ (𝑈 ∪ (((t+‘𝐹) “ 𝑈) ∪ ((t+‘𝐹) “ 𝑈)))
84, 7syl6ss 3595 . . 3 (𝜑 → (𝐹𝑈) ⊆ (𝑈 ∪ (((t+‘𝐹) “ 𝑈) ∪ ((t+‘𝐹) “ 𝑈))))
9 trclfvdecomr 37501 . . . . . . . . . . . 12 (𝐹 ∈ V → (t+‘𝐹) = (𝐹 ∪ ((t+‘𝐹) ∘ 𝐹)))
101, 9syl 17 . . . . . . . . . . 11 (𝜑 → (t+‘𝐹) = (𝐹 ∪ ((t+‘𝐹) ∘ 𝐹)))
1110cnveqd 5258 . . . . . . . . . 10 (𝜑(t+‘𝐹) = (𝐹 ∪ ((t+‘𝐹) ∘ 𝐹)))
12 cnvun 5497 . . . . . . . . . . 11 (𝐹 ∪ ((t+‘𝐹) ∘ 𝐹)) = (𝐹((t+‘𝐹) ∘ 𝐹))
13 cnvco 5268 . . . . . . . . . . . 12 ((t+‘𝐹) ∘ 𝐹) = (𝐹(t+‘𝐹))
1413uneq2i 3742 . . . . . . . . . . 11 (𝐹((t+‘𝐹) ∘ 𝐹)) = (𝐹 ∪ (𝐹(t+‘𝐹)))
1512, 14eqtri 2643 . . . . . . . . . 10 (𝐹 ∪ ((t+‘𝐹) ∘ 𝐹)) = (𝐹 ∪ (𝐹(t+‘𝐹)))
1611, 15syl6eq 2671 . . . . . . . . 9 (𝜑(t+‘𝐹) = (𝐹 ∪ (𝐹(t+‘𝐹))))
1716coeq2d 5244 . . . . . . . 8 (𝜑 → (𝐹(t+‘𝐹)) = (𝐹 ∘ (𝐹 ∪ (𝐹(t+‘𝐹)))))
18 coundi 5595 . . . . . . . . 9 (𝐹 ∘ (𝐹 ∪ (𝐹(t+‘𝐹)))) = ((𝐹𝐹) ∪ (𝐹 ∘ (𝐹(t+‘𝐹))))
19 frege131d.fun . . . . . . . . . . 11 (𝜑 → Fun 𝐹)
20 funcocnv2 6118 . . . . . . . . . . 11 (Fun 𝐹 → (𝐹𝐹) = ( I ↾ ran 𝐹))
2119, 20syl 17 . . . . . . . . . 10 (𝜑 → (𝐹𝐹) = ( I ↾ ran 𝐹))
22 coass 5613 . . . . . . . . . . . 12 ((𝐹𝐹) ∘ (t+‘𝐹)) = (𝐹 ∘ (𝐹(t+‘𝐹)))
2322eqcomi 2630 . . . . . . . . . . 11 (𝐹 ∘ (𝐹(t+‘𝐹))) = ((𝐹𝐹) ∘ (t+‘𝐹))
2421coeq1d 5243 . . . . . . . . . . 11 (𝜑 → ((𝐹𝐹) ∘ (t+‘𝐹)) = (( I ↾ ran 𝐹) ∘ (t+‘𝐹)))
2523, 24syl5eq 2667 . . . . . . . . . 10 (𝜑 → (𝐹 ∘ (𝐹(t+‘𝐹))) = (( I ↾ ran 𝐹) ∘ (t+‘𝐹)))
2621, 25uneq12d 3746 . . . . . . . . 9 (𝜑 → ((𝐹𝐹) ∪ (𝐹 ∘ (𝐹(t+‘𝐹)))) = (( I ↾ ran 𝐹) ∪ (( I ↾ ran 𝐹) ∘ (t+‘𝐹))))
2718, 26syl5eq 2667 . . . . . . . 8 (𝜑 → (𝐹 ∘ (𝐹 ∪ (𝐹(t+‘𝐹)))) = (( I ↾ ran 𝐹) ∪ (( I ↾ ran 𝐹) ∘ (t+‘𝐹))))
2817, 27eqtrd 2655 . . . . . . 7 (𝜑 → (𝐹(t+‘𝐹)) = (( I ↾ ran 𝐹) ∪ (( I ↾ ran 𝐹) ∘ (t+‘𝐹))))
2928imaeq1d 5424 . . . . . 6 (𝜑 → ((𝐹(t+‘𝐹)) “ 𝑈) = ((( I ↾ ran 𝐹) ∪ (( I ↾ ran 𝐹) ∘ (t+‘𝐹))) “ 𝑈))
30 imaundir 5505 . . . . . 6 ((( I ↾ ran 𝐹) ∪ (( I ↾ ran 𝐹) ∘ (t+‘𝐹))) “ 𝑈) = ((( I ↾ ran 𝐹) “ 𝑈) ∪ ((( I ↾ ran 𝐹) ∘ (t+‘𝐹)) “ 𝑈))
3129, 30syl6eq 2671 . . . . 5 (𝜑 → ((𝐹(t+‘𝐹)) “ 𝑈) = ((( I ↾ ran 𝐹) “ 𝑈) ∪ ((( I ↾ ran 𝐹) ∘ (t+‘𝐹)) “ 𝑈)))
32 resss 5381 . . . . . . . . 9 ( I ↾ ran 𝐹) ⊆ I
33 imass1 5459 . . . . . . . . 9 (( I ↾ ran 𝐹) ⊆ I → (( I ↾ ran 𝐹) “ 𝑈) ⊆ ( I “ 𝑈))
3432, 33ax-mp 5 . . . . . . . 8 (( I ↾ ran 𝐹) “ 𝑈) ⊆ ( I “ 𝑈)
35 imai 5437 . . . . . . . 8 ( I “ 𝑈) = 𝑈
3634, 35sseqtri 3616 . . . . . . 7 (( I ↾ ran 𝐹) “ 𝑈) ⊆ 𝑈
37 imaco 5599 . . . . . . . 8 ((( I ↾ ran 𝐹) ∘ (t+‘𝐹)) “ 𝑈) = (( I ↾ ran 𝐹) “ ((t+‘𝐹) “ 𝑈))
38 imass1 5459 . . . . . . . . . 10 (( I ↾ ran 𝐹) ⊆ I → (( I ↾ ran 𝐹) “ ((t+‘𝐹) “ 𝑈)) ⊆ ( I “ ((t+‘𝐹) “ 𝑈)))
3932, 38ax-mp 5 . . . . . . . . 9 (( I ↾ ran 𝐹) “ ((t+‘𝐹) “ 𝑈)) ⊆ ( I “ ((t+‘𝐹) “ 𝑈))
40 imai 5437 . . . . . . . . 9 ( I “ ((t+‘𝐹) “ 𝑈)) = ((t+‘𝐹) “ 𝑈)
4139, 40sseqtri 3616 . . . . . . . 8 (( I ↾ ran 𝐹) “ ((t+‘𝐹) “ 𝑈)) ⊆ ((t+‘𝐹) “ 𝑈)
4237, 41eqsstri 3614 . . . . . . 7 ((( I ↾ ran 𝐹) ∘ (t+‘𝐹)) “ 𝑈) ⊆ ((t+‘𝐹) “ 𝑈)
43 unss12 3763 . . . . . . 7 (((( I ↾ ran 𝐹) “ 𝑈) ⊆ 𝑈 ∧ ((( I ↾ ran 𝐹) ∘ (t+‘𝐹)) “ 𝑈) ⊆ ((t+‘𝐹) “ 𝑈)) → ((( I ↾ ran 𝐹) “ 𝑈) ∪ ((( I ↾ ran 𝐹) ∘ (t+‘𝐹)) “ 𝑈)) ⊆ (𝑈 ∪ ((t+‘𝐹) “ 𝑈)))
4436, 42, 43mp2an 707 . . . . . 6 ((( I ↾ ran 𝐹) “ 𝑈) ∪ ((( I ↾ ran 𝐹) ∘ (t+‘𝐹)) “ 𝑈)) ⊆ (𝑈 ∪ ((t+‘𝐹) “ 𝑈))
45 ssun1 3754 . . . . . . 7 (𝑈 ∪ ((t+‘𝐹) “ 𝑈)) ⊆ ((𝑈 ∪ ((t+‘𝐹) “ 𝑈)) ∪ ((t+‘𝐹) “ 𝑈))
46 unass 3748 . . . . . . 7 ((𝑈 ∪ ((t+‘𝐹) “ 𝑈)) ∪ ((t+‘𝐹) “ 𝑈)) = (𝑈 ∪ (((t+‘𝐹) “ 𝑈) ∪ ((t+‘𝐹) “ 𝑈)))
4745, 46sseqtri 3616 . . . . . 6 (𝑈 ∪ ((t+‘𝐹) “ 𝑈)) ⊆ (𝑈 ∪ (((t+‘𝐹) “ 𝑈) ∪ ((t+‘𝐹) “ 𝑈)))
4844, 47sstri 3592 . . . . 5 ((( I ↾ ran 𝐹) “ 𝑈) ∪ ((( I ↾ ran 𝐹) ∘ (t+‘𝐹)) “ 𝑈)) ⊆ (𝑈 ∪ (((t+‘𝐹) “ 𝑈) ∪ ((t+‘𝐹) “ 𝑈)))
4931, 48syl6eqss 3634 . . . 4 (𝜑 → ((𝐹(t+‘𝐹)) “ 𝑈) ⊆ (𝑈 ∪ (((t+‘𝐹) “ 𝑈) ∪ ((t+‘𝐹) “ 𝑈))))
50 coss1 5237 . . . . . . . 8 (𝐹 ⊆ (t+‘𝐹) → (𝐹 ∘ (t+‘𝐹)) ⊆ ((t+‘𝐹) ∘ (t+‘𝐹)))
511, 2, 503syl 18 . . . . . . 7 (𝜑 → (𝐹 ∘ (t+‘𝐹)) ⊆ ((t+‘𝐹) ∘ (t+‘𝐹)))
52 trclfvcotrg 13691 . . . . . . 7 ((t+‘𝐹) ∘ (t+‘𝐹)) ⊆ (t+‘𝐹)
5351, 52syl6ss 3595 . . . . . 6 (𝜑 → (𝐹 ∘ (t+‘𝐹)) ⊆ (t+‘𝐹))
54 imass1 5459 . . . . . 6 ((𝐹 ∘ (t+‘𝐹)) ⊆ (t+‘𝐹) → ((𝐹 ∘ (t+‘𝐹)) “ 𝑈) ⊆ ((t+‘𝐹) “ 𝑈))
5553, 54syl 17 . . . . 5 (𝜑 → ((𝐹 ∘ (t+‘𝐹)) “ 𝑈) ⊆ ((t+‘𝐹) “ 𝑈))
5655, 7syl6ss 3595 . . . 4 (𝜑 → ((𝐹 ∘ (t+‘𝐹)) “ 𝑈) ⊆ (𝑈 ∪ (((t+‘𝐹) “ 𝑈) ∪ ((t+‘𝐹) “ 𝑈))))
5749, 56unssd 3767 . . 3 (𝜑 → (((𝐹(t+‘𝐹)) “ 𝑈) ∪ ((𝐹 ∘ (t+‘𝐹)) “ 𝑈)) ⊆ (𝑈 ∪ (((t+‘𝐹) “ 𝑈) ∪ ((t+‘𝐹) “ 𝑈))))
588, 57unssd 3767 . 2 (𝜑 → ((𝐹𝑈) ∪ (((𝐹(t+‘𝐹)) “ 𝑈) ∪ ((𝐹 ∘ (t+‘𝐹)) “ 𝑈))) ⊆ (𝑈 ∪ (((t+‘𝐹) “ 𝑈) ∪ ((t+‘𝐹) “ 𝑈))))
59 frege131d.a . . . 4 (𝜑𝐴 = (𝑈 ∪ (((t+‘𝐹) “ 𝑈) ∪ ((t+‘𝐹) “ 𝑈))))
6059imaeq2d 5425 . . 3 (𝜑 → (𝐹𝐴) = (𝐹 “ (𝑈 ∪ (((t+‘𝐹) “ 𝑈) ∪ ((t+‘𝐹) “ 𝑈)))))
61 imaundi 5504 . . . 4 (𝐹 “ (𝑈 ∪ (((t+‘𝐹) “ 𝑈) ∪ ((t+‘𝐹) “ 𝑈)))) = ((𝐹𝑈) ∪ (𝐹 “ (((t+‘𝐹) “ 𝑈) ∪ ((t+‘𝐹) “ 𝑈))))
62 imaundi 5504 . . . . . 6 (𝐹 “ (((t+‘𝐹) “ 𝑈) ∪ ((t+‘𝐹) “ 𝑈))) = ((𝐹 “ ((t+‘𝐹) “ 𝑈)) ∪ (𝐹 “ ((t+‘𝐹) “ 𝑈)))
63 imaco 5599 . . . . . . . 8 ((𝐹(t+‘𝐹)) “ 𝑈) = (𝐹 “ ((t+‘𝐹) “ 𝑈))
6463eqcomi 2630 . . . . . . 7 (𝐹 “ ((t+‘𝐹) “ 𝑈)) = ((𝐹(t+‘𝐹)) “ 𝑈)
65 imaco 5599 . . . . . . . 8 ((𝐹 ∘ (t+‘𝐹)) “ 𝑈) = (𝐹 “ ((t+‘𝐹) “ 𝑈))
6665eqcomi 2630 . . . . . . 7 (𝐹 “ ((t+‘𝐹) “ 𝑈)) = ((𝐹 ∘ (t+‘𝐹)) “ 𝑈)
6764, 66uneq12i 3743 . . . . . 6 ((𝐹 “ ((t+‘𝐹) “ 𝑈)) ∪ (𝐹 “ ((t+‘𝐹) “ 𝑈))) = (((𝐹(t+‘𝐹)) “ 𝑈) ∪ ((𝐹 ∘ (t+‘𝐹)) “ 𝑈))
6862, 67eqtri 2643 . . . . 5 (𝐹 “ (((t+‘𝐹) “ 𝑈) ∪ ((t+‘𝐹) “ 𝑈))) = (((𝐹(t+‘𝐹)) “ 𝑈) ∪ ((𝐹 ∘ (t+‘𝐹)) “ 𝑈))
6968uneq2i 3742 . . . 4 ((𝐹𝑈) ∪ (𝐹 “ (((t+‘𝐹) “ 𝑈) ∪ ((t+‘𝐹) “ 𝑈)))) = ((𝐹𝑈) ∪ (((𝐹(t+‘𝐹)) “ 𝑈) ∪ ((𝐹 ∘ (t+‘𝐹)) “ 𝑈)))
7061, 69eqtri 2643 . . 3 (𝐹 “ (𝑈 ∪ (((t+‘𝐹) “ 𝑈) ∪ ((t+‘𝐹) “ 𝑈)))) = ((𝐹𝑈) ∪ (((𝐹(t+‘𝐹)) “ 𝑈) ∪ ((𝐹 ∘ (t+‘𝐹)) “ 𝑈)))
7160, 70syl6eq 2671 . 2 (𝜑 → (𝐹𝐴) = ((𝐹𝑈) ∪ (((𝐹(t+‘𝐹)) “ 𝑈) ∪ ((𝐹 ∘ (t+‘𝐹)) “ 𝑈))))
7258, 71, 593sstr4d 3627 1 (𝜑 → (𝐹𝐴) ⊆ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1480  wcel 1987  Vcvv 3186  cun 3553  wss 3555   I cid 4984  ccnv 5073  ran crn 5075  cres 5076  cima 5077  ccom 5078  Fun wfun 5841  cfv 5847  t+ctcl 13658
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-nn 10965  df-2 11023  df-n0 11237  df-z 11322  df-uz 11632  df-fz 12269  df-seq 12742  df-trcl 13660  df-relexp 13695
This theorem is referenced by:  frege133d  37538
  Copyright terms: Public domain W3C validator