Mathbox for Richard Penner < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege133 Structured version   Visualization version   GIF version

Theorem frege133 38607
 Description: If the procedure 𝑅 is single-valued and if 𝑀 and 𝑌 follow 𝑋 in the 𝑅-sequence, then 𝑌 belongs to the 𝑅-sequence beginning with 𝑀 or precedes 𝑀 in the 𝑅-sequence. Proposition 133 of [Frege1879] p. 86. (Contributed by RP, 9-Jul-2020.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
frege133.x 𝑋𝑈
frege133.y 𝑌𝑉
frege133.m 𝑀𝑊
frege133.r 𝑅𝑆
Assertion
Ref Expression
frege133 (Fun 𝑅 → (𝑋(t+‘𝑅)𝑀 → (𝑋(t+‘𝑅)𝑌 → (¬ 𝑌(t+‘𝑅)𝑀𝑀((t+‘𝑅) ∪ I )𝑌))))

Proof of Theorem frege133
StepHypRef Expression
1 frege133.x . . 3 𝑋𝑈
2 frege133.y . . 3 𝑌𝑉
3 frege133.r . . 3 𝑅𝑆
4 fvex 6239 . . . . 5 (t+‘𝑅) ∈ V
54cnvex 7155 . . . 4 (t+‘𝑅) ∈ V
6 imaexg 7145 . . . 4 ((t+‘𝑅) ∈ V → ((t+‘𝑅) “ {𝑀}) ∈ V)
75, 6ax-mp 5 . . 3 ((t+‘𝑅) “ {𝑀}) ∈ V
8 imaundir 5581 . . . 4 (((t+‘𝑅) ∪ I ) “ {𝑀}) = (((t+‘𝑅) “ {𝑀}) ∪ ( I “ {𝑀}))
9 imaexg 7145 . . . . . 6 ((t+‘𝑅) ∈ V → ((t+‘𝑅) “ {𝑀}) ∈ V)
104, 9ax-mp 5 . . . . 5 ((t+‘𝑅) “ {𝑀}) ∈ V
11 imai 5513 . . . . . 6 ( I “ {𝑀}) = {𝑀}
12 snex 4938 . . . . . 6 {𝑀} ∈ V
1311, 12eqeltri 2726 . . . . 5 ( I “ {𝑀}) ∈ V
1410, 13unex 6998 . . . 4 (((t+‘𝑅) “ {𝑀}) ∪ ( I “ {𝑀})) ∈ V
158, 14eqeltri 2726 . . 3 (((t+‘𝑅) ∪ I ) “ {𝑀}) ∈ V
161, 2, 3, 7, 15frege83 38557 . 2 (𝑅 hereditary (((t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀})) → (𝑋 ∈ ((t+‘𝑅) “ {𝑀}) → (𝑋(t+‘𝑅)𝑌𝑌 ∈ (((t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀})))))
17 frege133.m . . . . . . . 8 𝑀𝑊
1817elexi 3244 . . . . . . 7 𝑀 ∈ V
191elexi 3244 . . . . . . 7 𝑋 ∈ V
2018, 19elimasn 5525 . . . . . 6 (𝑋 ∈ ((t+‘𝑅) “ {𝑀}) ↔ ⟨𝑀, 𝑋⟩ ∈ (t+‘𝑅))
21 df-br 4686 . . . . . 6 (𝑀(t+‘𝑅)𝑋 ↔ ⟨𝑀, 𝑋⟩ ∈ (t+‘𝑅))
2218, 19brcnv 5337 . . . . . 6 (𝑀(t+‘𝑅)𝑋𝑋(t+‘𝑅)𝑀)
2320, 21, 223bitr2i 288 . . . . 5 (𝑋 ∈ ((t+‘𝑅) “ {𝑀}) ↔ 𝑋(t+‘𝑅)𝑀)
24 elun 3786 . . . . . . 7 (𝑌 ∈ (((t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀})) ↔ (𝑌 ∈ ((t+‘𝑅) “ {𝑀}) ∨ 𝑌 ∈ (((t+‘𝑅) ∪ I ) “ {𝑀})))
25 df-or 384 . . . . . . 7 ((𝑌 ∈ ((t+‘𝑅) “ {𝑀}) ∨ 𝑌 ∈ (((t+‘𝑅) ∪ I ) “ {𝑀})) ↔ (¬ 𝑌 ∈ ((t+‘𝑅) “ {𝑀}) → 𝑌 ∈ (((t+‘𝑅) ∪ I ) “ {𝑀})))
262elexi 3244 . . . . . . . . . . 11 𝑌 ∈ V
2718, 26elimasn 5525 . . . . . . . . . 10 (𝑌 ∈ ((t+‘𝑅) “ {𝑀}) ↔ ⟨𝑀, 𝑌⟩ ∈ (t+‘𝑅))
28 df-br 4686 . . . . . . . . . 10 (𝑀(t+‘𝑅)𝑌 ↔ ⟨𝑀, 𝑌⟩ ∈ (t+‘𝑅))
2918, 26brcnv 5337 . . . . . . . . . 10 (𝑀(t+‘𝑅)𝑌𝑌(t+‘𝑅)𝑀)
3027, 28, 293bitr2i 288 . . . . . . . . 9 (𝑌 ∈ ((t+‘𝑅) “ {𝑀}) ↔ 𝑌(t+‘𝑅)𝑀)
3130notbii 309 . . . . . . . 8 𝑌 ∈ ((t+‘𝑅) “ {𝑀}) ↔ ¬ 𝑌(t+‘𝑅)𝑀)
3218, 26elimasn 5525 . . . . . . . . 9 (𝑌 ∈ (((t+‘𝑅) ∪ I ) “ {𝑀}) ↔ ⟨𝑀, 𝑌⟩ ∈ ((t+‘𝑅) ∪ I ))
33 df-br 4686 . . . . . . . . 9 (𝑀((t+‘𝑅) ∪ I )𝑌 ↔ ⟨𝑀, 𝑌⟩ ∈ ((t+‘𝑅) ∪ I ))
3432, 33bitr4i 267 . . . . . . . 8 (𝑌 ∈ (((t+‘𝑅) ∪ I ) “ {𝑀}) ↔ 𝑀((t+‘𝑅) ∪ I )𝑌)
3531, 34imbi12i 339 . . . . . . 7 ((¬ 𝑌 ∈ ((t+‘𝑅) “ {𝑀}) → 𝑌 ∈ (((t+‘𝑅) ∪ I ) “ {𝑀})) ↔ (¬ 𝑌(t+‘𝑅)𝑀𝑀((t+‘𝑅) ∪ I )𝑌))
3624, 25, 353bitri 286 . . . . . 6 (𝑌 ∈ (((t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀})) ↔ (¬ 𝑌(t+‘𝑅)𝑀𝑀((t+‘𝑅) ∪ I )𝑌))
3736imbi2i 325 . . . . 5 ((𝑋(t+‘𝑅)𝑌𝑌 ∈ (((t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀}))) ↔ (𝑋(t+‘𝑅)𝑌 → (¬ 𝑌(t+‘𝑅)𝑀𝑀((t+‘𝑅) ∪ I )𝑌)))
3823, 37imbi12i 339 . . . 4 ((𝑋 ∈ ((t+‘𝑅) “ {𝑀}) → (𝑋(t+‘𝑅)𝑌𝑌 ∈ (((t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀})))) ↔ (𝑋(t+‘𝑅)𝑀 → (𝑋(t+‘𝑅)𝑌 → (¬ 𝑌(t+‘𝑅)𝑀𝑀((t+‘𝑅) ∪ I )𝑌))))
3938imbi2i 325 . . 3 ((𝑅 hereditary (((t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀})) → (𝑋 ∈ ((t+‘𝑅) “ {𝑀}) → (𝑋(t+‘𝑅)𝑌𝑌 ∈ (((t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀}))))) ↔ (𝑅 hereditary (((t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀})) → (𝑋(t+‘𝑅)𝑀 → (𝑋(t+‘𝑅)𝑌 → (¬ 𝑌(t+‘𝑅)𝑀𝑀((t+‘𝑅) ∪ I )𝑌)))))
4017, 3frege132 38606 . . 3 ((𝑅 hereditary (((t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀})) → (𝑋(t+‘𝑅)𝑀 → (𝑋(t+‘𝑅)𝑌 → (¬ 𝑌(t+‘𝑅)𝑀𝑀((t+‘𝑅) ∪ I )𝑌)))) → (Fun 𝑅 → (𝑋(t+‘𝑅)𝑀 → (𝑋(t+‘𝑅)𝑌 → (¬ 𝑌(t+‘𝑅)𝑀𝑀((t+‘𝑅) ∪ I )𝑌)))))
4139, 40sylbi 207 . 2 ((𝑅 hereditary (((t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀})) → (𝑋 ∈ ((t+‘𝑅) “ {𝑀}) → (𝑋(t+‘𝑅)𝑌𝑌 ∈ (((t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀}))))) → (Fun 𝑅 → (𝑋(t+‘𝑅)𝑀 → (𝑋(t+‘𝑅)𝑌 → (¬ 𝑌(t+‘𝑅)𝑀𝑀((t+‘𝑅) ∪ I )𝑌)))))
4216, 41ax-mp 5 1 (Fun 𝑅 → (𝑋(t+‘𝑅)𝑀 → (𝑋(t+‘𝑅)𝑌 → (¬ 𝑌(t+‘𝑅)𝑀𝑀((t+‘𝑅) ∪ I )𝑌))))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∨ wo 382   ∈ wcel 2030  Vcvv 3231   ∪ cun 3605  {csn 4210  ⟨cop 4216   class class class wbr 4685   I cid 5052  ◡ccnv 5142   “ cima 5146  Fun wfun 5920  ‘cfv 5926  t+ctcl 13770   hereditary whe 38383 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-frege1 38401  ax-frege2 38402  ax-frege8 38420  ax-frege28 38441  ax-frege31 38445  ax-frege41 38456  ax-frege52a 38468  ax-frege52c 38499  ax-frege58b 38512 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-ifp 1033  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-2 11117  df-n0 11331  df-z 11416  df-uz 11726  df-seq 12842  df-trcl 13772  df-relexp 13805  df-he 38384 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator