Mathbox for Richard Penner < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege133d Structured version   Visualization version   GIF version

Theorem frege133d 38444
 Description: If 𝐹 is a function and 𝐴 and 𝐵 both follow 𝑋 in the transitive closure of 𝐹, then (for distinct 𝐴 and 𝐵) either 𝐴 follows 𝐵 or 𝐵 follows 𝐴 in the transitive closure of 𝐹 (or both if it loops). Similar to Proposition 133 of [Frege1879] p. 86. Compare with frege133 38677. (Contributed by RP, 18-Jul-2020.)
Hypotheses
Ref Expression
frege133d.f (𝜑𝐹 ∈ V)
frege133d.xa (𝜑𝑋(t+‘𝐹)𝐴)
frege133d.xb (𝜑𝑋(t+‘𝐹)𝐵)
frege133d.fun (𝜑 → Fun 𝐹)
Assertion
Ref Expression
frege133d (𝜑 → (𝐴(t+‘𝐹)𝐵𝐴 = 𝐵𝐵(t+‘𝐹)𝐴))

Proof of Theorem frege133d
StepHypRef Expression
1 frege133d.f . . . 4 (𝜑𝐹 ∈ V)
2 frege133d.xb . . . . 5 (𝜑𝑋(t+‘𝐹)𝐵)
3 frege133d.fun . . . . . . . 8 (𝜑 → Fun 𝐹)
4 funrel 5986 . . . . . . . 8 (Fun 𝐹 → Rel 𝐹)
53, 4syl 17 . . . . . . 7 (𝜑 → Rel 𝐹)
6 reltrclfv 13846 . . . . . . 7 ((𝐹 ∈ V ∧ Rel 𝐹) → Rel (t+‘𝐹))
71, 5, 6syl2anc 696 . . . . . 6 (𝜑 → Rel (t+‘𝐹))
8 eliniseg2 5583 . . . . . 6 (Rel (t+‘𝐹) → (𝑋 ∈ ((t+‘𝐹) “ {𝐵}) ↔ 𝑋(t+‘𝐹)𝐵))
97, 8syl 17 . . . . 5 (𝜑 → (𝑋 ∈ ((t+‘𝐹) “ {𝐵}) ↔ 𝑋(t+‘𝐹)𝐵))
102, 9mpbird 247 . . . 4 (𝜑𝑋 ∈ ((t+‘𝐹) “ {𝐵}))
11 frege133d.xa . . . . 5 (𝜑𝑋(t+‘𝐹)𝐴)
12 brrelex2 5234 . . . . 5 ((Rel (t+‘𝐹) ∧ 𝑋(t+‘𝐹)𝐴) → 𝐴 ∈ V)
137, 11, 12syl2anc 696 . . . 4 (𝜑𝐴 ∈ V)
14 un12 3847 . . . . . 6 (((t+‘𝐹) “ {𝐵}) ∪ ({𝐵} ∪ ((t+‘𝐹) “ {𝐵}))) = ({𝐵} ∪ (((t+‘𝐹) “ {𝐵}) ∪ ((t+‘𝐹) “ {𝐵})))
1514a1i 11 . . . . 5 (𝜑 → (((t+‘𝐹) “ {𝐵}) ∪ ({𝐵} ∪ ((t+‘𝐹) “ {𝐵}))) = ({𝐵} ∪ (((t+‘𝐹) “ {𝐵}) ∪ ((t+‘𝐹) “ {𝐵}))))
161, 15, 3frege131d 38443 . . . 4 (𝜑 → (𝐹 “ (((t+‘𝐹) “ {𝐵}) ∪ ({𝐵} ∪ ((t+‘𝐹) “ {𝐵})))) ⊆ (((t+‘𝐹) “ {𝐵}) ∪ ({𝐵} ∪ ((t+‘𝐹) “ {𝐵}))))
171, 10, 13, 11, 16frege83d 38427 . . 3 (𝜑𝐴 ∈ (((t+‘𝐹) “ {𝐵}) ∪ ({𝐵} ∪ ((t+‘𝐹) “ {𝐵}))))
18 elun 3829 . . . . 5 (𝐴 ∈ ({𝐵} ∪ ((t+‘𝐹) “ {𝐵})) ↔ (𝐴 ∈ {𝐵} ∨ 𝐴 ∈ ((t+‘𝐹) “ {𝐵})))
1918orbi2i 542 . . . 4 ((𝐴 ∈ ((t+‘𝐹) “ {𝐵}) ∨ 𝐴 ∈ ({𝐵} ∪ ((t+‘𝐹) “ {𝐵}))) ↔ (𝐴 ∈ ((t+‘𝐹) “ {𝐵}) ∨ (𝐴 ∈ {𝐵} ∨ 𝐴 ∈ ((t+‘𝐹) “ {𝐵}))))
20 elun 3829 . . . 4 (𝐴 ∈ (((t+‘𝐹) “ {𝐵}) ∪ ({𝐵} ∪ ((t+‘𝐹) “ {𝐵}))) ↔ (𝐴 ∈ ((t+‘𝐹) “ {𝐵}) ∨ 𝐴 ∈ ({𝐵} ∪ ((t+‘𝐹) “ {𝐵}))))
21 3orass 1075 . . . 4 ((𝐴 ∈ ((t+‘𝐹) “ {𝐵}) ∨ 𝐴 ∈ {𝐵} ∨ 𝐴 ∈ ((t+‘𝐹) “ {𝐵})) ↔ (𝐴 ∈ ((t+‘𝐹) “ {𝐵}) ∨ (𝐴 ∈ {𝐵} ∨ 𝐴 ∈ ((t+‘𝐹) “ {𝐵}))))
2219, 20, 213bitr4i 292 . . 3 (𝐴 ∈ (((t+‘𝐹) “ {𝐵}) ∪ ({𝐵} ∪ ((t+‘𝐹) “ {𝐵}))) ↔ (𝐴 ∈ ((t+‘𝐹) “ {𝐵}) ∨ 𝐴 ∈ {𝐵} ∨ 𝐴 ∈ ((t+‘𝐹) “ {𝐵})))
2317, 22sylib 208 . 2 (𝜑 → (𝐴 ∈ ((t+‘𝐹) “ {𝐵}) ∨ 𝐴 ∈ {𝐵} ∨ 𝐴 ∈ ((t+‘𝐹) “ {𝐵})))
24 eliniseg2 5583 . . . . 5 (Rel (t+‘𝐹) → (𝐴 ∈ ((t+‘𝐹) “ {𝐵}) ↔ 𝐴(t+‘𝐹)𝐵))
257, 24syl 17 . . . 4 (𝜑 → (𝐴 ∈ ((t+‘𝐹) “ {𝐵}) ↔ 𝐴(t+‘𝐹)𝐵))
2625biimpd 219 . . 3 (𝜑 → (𝐴 ∈ ((t+‘𝐹) “ {𝐵}) → 𝐴(t+‘𝐹)𝐵))
27 elsni 4270 . . . 4 (𝐴 ∈ {𝐵} → 𝐴 = 𝐵)
2827a1i 11 . . 3 (𝜑 → (𝐴 ∈ {𝐵} → 𝐴 = 𝐵))
29 elrelimasn 5567 . . . . 5 (Rel (t+‘𝐹) → (𝐴 ∈ ((t+‘𝐹) “ {𝐵}) ↔ 𝐵(t+‘𝐹)𝐴))
307, 29syl 17 . . . 4 (𝜑 → (𝐴 ∈ ((t+‘𝐹) “ {𝐵}) ↔ 𝐵(t+‘𝐹)𝐴))
3130biimpd 219 . . 3 (𝜑 → (𝐴 ∈ ((t+‘𝐹) “ {𝐵}) → 𝐵(t+‘𝐹)𝐴))
3226, 28, 313orim123d 1488 . 2 (𝜑 → ((𝐴 ∈ ((t+‘𝐹) “ {𝐵}) ∨ 𝐴 ∈ {𝐵} ∨ 𝐴 ∈ ((t+‘𝐹) “ {𝐵})) → (𝐴(t+‘𝐹)𝐵𝐴 = 𝐵𝐵(t+‘𝐹)𝐴)))
3323, 32mpd 15 1 (𝜑 → (𝐴(t+‘𝐹)𝐵𝐴 = 𝐵𝐵(t+‘𝐹)𝐴))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∨ wo 382   ∨ w3o 1071   = wceq 1564   ∈ wcel 2071  Vcvv 3272   ∪ cun 3646  {csn 4253   class class class wbr 4728  ◡ccnv 5185   “ cima 5189  Rel wrel 5191  Fun wfun 5963  ‘cfv 5969  t+ctcl 13814 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1818  ax-5 1920  ax-6 1986  ax-7 2022  ax-8 2073  ax-9 2080  ax-10 2100  ax-11 2115  ax-12 2128  ax-13 2323  ax-ext 2672  ax-rep 4847  ax-sep 4857  ax-nul 4865  ax-pow 4916  ax-pr 4979  ax-un 7034  ax-cnex 10073  ax-resscn 10074  ax-1cn 10075  ax-icn 10076  ax-addcl 10077  ax-addrcl 10078  ax-mulcl 10079  ax-mulrcl 10080  ax-mulcom 10081  ax-addass 10082  ax-mulass 10083  ax-distr 10084  ax-i2m1 10085  ax-1ne0 10086  ax-1rid 10087  ax-rnegex 10088  ax-rrecex 10089  ax-cnre 10090  ax-pre-lttri 10091  ax-pre-lttrn 10092  ax-pre-ltadd 10093  ax-pre-mulgt0 10094 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1567  df-ex 1786  df-nf 1791  df-sb 1979  df-eu 2543  df-mo 2544  df-clab 2679  df-cleq 2685  df-clel 2688  df-nfc 2823  df-ne 2865  df-nel 2968  df-ral 2987  df-rex 2988  df-reu 2989  df-rab 2991  df-v 3274  df-sbc 3510  df-csb 3608  df-dif 3651  df-un 3653  df-in 3655  df-ss 3662  df-pss 3664  df-nul 3992  df-if 4163  df-pw 4236  df-sn 4254  df-pr 4256  df-tp 4258  df-op 4260  df-uni 4513  df-int 4552  df-iun 4598  df-br 4729  df-opab 4789  df-mpt 4806  df-tr 4829  df-id 5096  df-eprel 5101  df-po 5107  df-so 5108  df-fr 5145  df-we 5147  df-xp 5192  df-rel 5193  df-cnv 5194  df-co 5195  df-dm 5196  df-rn 5197  df-res 5198  df-ima 5199  df-pred 5761  df-ord 5807  df-on 5808  df-lim 5809  df-suc 5810  df-iota 5932  df-fun 5971  df-fn 5972  df-f 5973  df-f1 5974  df-fo 5975  df-f1o 5976  df-fv 5977  df-riota 6694  df-ov 6736  df-oprab 6737  df-mpt2 6738  df-om 7151  df-1st 7253  df-2nd 7254  df-wrecs 7495  df-recs 7556  df-rdg 7594  df-er 7830  df-en 8041  df-dom 8042  df-sdom 8043  df-pnf 10157  df-mnf 10158  df-xr 10159  df-ltxr 10160  df-le 10161  df-sub 10349  df-neg 10350  df-nn 11102  df-2 11160  df-n0 11374  df-z 11459  df-uz 11769  df-fz 12409  df-seq 12885  df-trcl 13816  df-relexp 13849 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator