Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege26 Structured version   Visualization version   GIF version

Theorem frege26 38421
Description: Identical to idd 24. Proposition 26 of [Frege1879] p. 42. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
frege26 (𝜑 → (𝜓𝜓))

Proof of Theorem frege26
StepHypRef Expression
1 ax-frege1 38401 . 2 (𝜓 → (𝜑𝜓))
2 ax-frege8 38420 . 2 ((𝜓 → (𝜑𝜓)) → (𝜑 → (𝜓𝜓)))
31, 2ax-mp 5 1 (𝜑 → (𝜓𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-frege1 38401  ax-frege8 38420
This theorem is referenced by:  frege27  38422
  Copyright terms: Public domain W3C validator