Mathbox for Richard Penner < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege53b Structured version   Visualization version   GIF version

Theorem frege53b 38501
 Description: Lemma for frege102 (via frege92 38566). Proposition 53 of [Frege1879] p. 50. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
frege53b ([𝑥 / 𝑦]𝜑 → (𝑥 = 𝑧 → [𝑧 / 𝑦]𝜑))

Proof of Theorem frege53b
StepHypRef Expression
1 frege52b 38500 . 2 (𝑥 = 𝑧 → ([𝑥 / 𝑦]𝜑 → [𝑧 / 𝑦]𝜑))
2 ax-frege8 38420 . 2 ((𝑥 = 𝑧 → ([𝑥 / 𝑦]𝜑 → [𝑧 / 𝑦]𝜑)) → ([𝑥 / 𝑦]𝜑 → (𝑥 = 𝑧 → [𝑧 / 𝑦]𝜑)))
31, 2ax-mp 5 1 ([𝑥 / 𝑦]𝜑 → (𝑥 = 𝑧 → [𝑧 / 𝑦]𝜑))
 Colors of variables: wff setvar class Syntax hints:   → wi 4  [wsb 1937 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-ext 2631  ax-frege8 38420  ax-frege52c 38499 This theorem depends on definitions:  df-bi 197  df-an 385  df-ex 1745  df-clab 2638  df-cleq 2644  df-clel 2647  df-sbc 3469 This theorem is referenced by:  frege55lem2b  38507
 Copyright terms: Public domain W3C validator