 Mathbox for Richard Penner < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege55lem1a Structured version   Visualization version   GIF version

Theorem frege55lem1a 38662
 Description: Necessary deduction regarding substitution of value in equality. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
frege55lem1a ((𝜏 → if-(𝜓, 𝜑, ¬ 𝜑)) → (𝜏 → (𝜓𝜑)))

Proof of Theorem frege55lem1a
StepHypRef Expression
1 frege54cor0a 38659 . . 3 ((𝜓𝜑) ↔ if-(𝜓, 𝜑, ¬ 𝜑))
21biimpri 218 . 2 (if-(𝜓, 𝜑, ¬ 𝜑) → (𝜓𝜑))
32imim2i 16 1 ((𝜏 → if-(𝜓, 𝜑, ¬ 𝜑)) → (𝜏 → (𝜓𝜑)))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 196  if-wif 1050 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-frege28 38626 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-ifp 1051 This theorem is referenced by:  frege55cor1a  38665
 Copyright terms: Public domain W3C validator