Mathbox for Richard Penner < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege62c Structured version   Visualization version   GIF version

Theorem frege62c 37728
 Description: A kind of Aristotelian inference. This judgement replaces the mode of inference barbara 2562 when the minor premise has a particular context. Proposition 62 of [Frege1879] p. 52. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
frege59c.a 𝐴𝐵
Assertion
Ref Expression
frege62c ([𝐴 / 𝑥]𝜑 → (∀𝑥(𝜑𝜓) → [𝐴 / 𝑥]𝜓))

Proof of Theorem frege62c
StepHypRef Expression
1 frege59c.a . . . 4 𝐴𝐵
21frege58c 37724 . . 3 (∀𝑥(𝜑𝜓) → [𝐴 / 𝑥](𝜑𝜓))
3 sbcim1 3468 . . 3 ([𝐴 / 𝑥](𝜑𝜓) → ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓))
42, 3syl 17 . 2 (∀𝑥(𝜑𝜓) → ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓))
5 ax-frege8 37612 . 2 ((∀𝑥(𝜑𝜓) → ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓)) → ([𝐴 / 𝑥]𝜑 → (∀𝑥(𝜑𝜓) → [𝐴 / 𝑥]𝜓)))
64, 5ax-mp 5 1 ([𝐴 / 𝑥]𝜑 → (∀𝑥(𝜑𝜓) → [𝐴 / 𝑥]𝜓))
 Colors of variables: wff setvar class Syntax hints:   → wi 4  ∀wal 1478   ∈ wcel 1987  [wsbc 3421 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-12 2044  ax-13 2245  ax-ext 2601  ax-frege8 37612  ax-frege58b 37704 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-clab 2608  df-cleq 2614  df-clel 2617  df-v 3191  df-sbc 3422 This theorem is referenced by:  frege63c  37729  frege64c  37730
 Copyright terms: Public domain W3C validator