![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > frege91 | Structured version Visualization version GIF version |
Description: Every result of an application of a procedure 𝑅 to an object 𝑋 follows that 𝑋 in the 𝑅-sequence. Proposition 91 of [Frege1879] p. 68. (Contributed by RP, 2-Jul-2020.) (Revised by RP, 5-Jul-2020.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
frege91.x | ⊢ 𝑋 ∈ 𝑈 |
frege91.y | ⊢ 𝑌 ∈ 𝑉 |
frege91.r | ⊢ 𝑅 ∈ 𝑊 |
Ref | Expression |
---|---|
frege91 | ⊢ (𝑋𝑅𝑌 → 𝑋(t+‘𝑅)𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frege91.y | . . . . 5 ⊢ 𝑌 ∈ 𝑉 | |
2 | 1 | frege63c 38740 | . . . 4 ⊢ ([𝑌 / 𝑎]𝑋𝑅𝑎 → (𝑅 hereditary 𝑓 → (∀𝑎(𝑋𝑅𝑎 → 𝑎 ∈ 𝑓) → [𝑌 / 𝑎]𝑎 ∈ 𝑓))) |
3 | sbcbr2g 4862 | . . . . . 6 ⊢ (𝑌 ∈ 𝑉 → ([𝑌 / 𝑎]𝑋𝑅𝑎 ↔ 𝑋𝑅⦋𝑌 / 𝑎⦌𝑎)) | |
4 | csbvarg 4146 | . . . . . . 7 ⊢ (𝑌 ∈ 𝑉 → ⦋𝑌 / 𝑎⦌𝑎 = 𝑌) | |
5 | 4 | breq2d 4816 | . . . . . 6 ⊢ (𝑌 ∈ 𝑉 → (𝑋𝑅⦋𝑌 / 𝑎⦌𝑎 ↔ 𝑋𝑅𝑌)) |
6 | 3, 5 | bitrd 268 | . . . . 5 ⊢ (𝑌 ∈ 𝑉 → ([𝑌 / 𝑎]𝑋𝑅𝑎 ↔ 𝑋𝑅𝑌)) |
7 | 1, 6 | ax-mp 5 | . . . 4 ⊢ ([𝑌 / 𝑎]𝑋𝑅𝑎 ↔ 𝑋𝑅𝑌) |
8 | sbcel1v 3636 | . . . . . 6 ⊢ ([𝑌 / 𝑎]𝑎 ∈ 𝑓 ↔ 𝑌 ∈ 𝑓) | |
9 | 8 | imbi2i 325 | . . . . 5 ⊢ ((∀𝑎(𝑋𝑅𝑎 → 𝑎 ∈ 𝑓) → [𝑌 / 𝑎]𝑎 ∈ 𝑓) ↔ (∀𝑎(𝑋𝑅𝑎 → 𝑎 ∈ 𝑓) → 𝑌 ∈ 𝑓)) |
10 | 9 | imbi2i 325 | . . . 4 ⊢ ((𝑅 hereditary 𝑓 → (∀𝑎(𝑋𝑅𝑎 → 𝑎 ∈ 𝑓) → [𝑌 / 𝑎]𝑎 ∈ 𝑓)) ↔ (𝑅 hereditary 𝑓 → (∀𝑎(𝑋𝑅𝑎 → 𝑎 ∈ 𝑓) → 𝑌 ∈ 𝑓))) |
11 | 2, 7, 10 | 3imtr3i 280 | . . 3 ⊢ (𝑋𝑅𝑌 → (𝑅 hereditary 𝑓 → (∀𝑎(𝑋𝑅𝑎 → 𝑎 ∈ 𝑓) → 𝑌 ∈ 𝑓))) |
12 | 11 | alrimiv 2004 | . 2 ⊢ (𝑋𝑅𝑌 → ∀𝑓(𝑅 hereditary 𝑓 → (∀𝑎(𝑋𝑅𝑎 → 𝑎 ∈ 𝑓) → 𝑌 ∈ 𝑓))) |
13 | frege91.x | . . 3 ⊢ 𝑋 ∈ 𝑈 | |
14 | frege91.r | . . 3 ⊢ 𝑅 ∈ 𝑊 | |
15 | 13, 1, 14 | frege90 38767 | . 2 ⊢ ((𝑋𝑅𝑌 → ∀𝑓(𝑅 hereditary 𝑓 → (∀𝑎(𝑋𝑅𝑎 → 𝑎 ∈ 𝑓) → 𝑌 ∈ 𝑓))) → (𝑋𝑅𝑌 → 𝑋(t+‘𝑅)𝑌)) |
16 | 12, 15 | ax-mp 5 | 1 ⊢ (𝑋𝑅𝑌 → 𝑋(t+‘𝑅)𝑌) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∀wal 1630 ∈ wcel 2139 [wsbc 3576 ⦋csb 3674 class class class wbr 4804 ‘cfv 6049 t+ctcl 13945 hereditary whe 38586 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 ax-cnex 10204 ax-resscn 10205 ax-1cn 10206 ax-icn 10207 ax-addcl 10208 ax-addrcl 10209 ax-mulcl 10210 ax-mulrcl 10211 ax-mulcom 10212 ax-addass 10213 ax-mulass 10214 ax-distr 10215 ax-i2m1 10216 ax-1ne0 10217 ax-1rid 10218 ax-rnegex 10219 ax-rrecex 10220 ax-cnre 10221 ax-pre-lttri 10222 ax-pre-lttrn 10223 ax-pre-ltadd 10224 ax-pre-mulgt0 10225 ax-frege1 38604 ax-frege2 38605 ax-frege8 38623 ax-frege52a 38671 ax-frege58b 38715 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-ifp 1051 df-3or 1073 df-3an 1074 df-tru 1635 df-fal 1638 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-int 4628 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6775 df-ov 6817 df-oprab 6818 df-mpt2 6819 df-om 7232 df-2nd 7335 df-wrecs 7577 df-recs 7638 df-rdg 7676 df-er 7913 df-en 8124 df-dom 8125 df-sdom 8126 df-pnf 10288 df-mnf 10289 df-xr 10290 df-ltxr 10291 df-le 10292 df-sub 10480 df-neg 10481 df-nn 11233 df-2 11291 df-n0 11505 df-z 11590 df-uz 11900 df-seq 13016 df-trcl 13947 df-relexp 13980 df-he 38587 |
This theorem is referenced by: frege92 38769 |
Copyright terms: Public domain | W3C validator |