![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > frege93 | Structured version Visualization version GIF version |
Description: Necessary condition for two elements to be related by the transitive closure. Proposition 93 of [Frege1879] p. 70. (Contributed by RP, 2-Jul-2020.) (Revised by RP, 5-Jul-2020.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
frege91.x | ⊢ 𝑋 ∈ 𝑈 |
frege91.y | ⊢ 𝑌 ∈ 𝑉 |
frege91.r | ⊢ 𝑅 ∈ 𝑊 |
Ref | Expression |
---|---|
frege93 | ⊢ (∀𝑓(∀𝑧(𝑋𝑅𝑧 → 𝑧 ∈ 𝑓) → (𝑅 hereditary 𝑓 → 𝑌 ∈ 𝑓)) → 𝑋(t+‘𝑅)𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3234 | . . . . 5 ⊢ 𝑓 ∈ V | |
2 | 1 | frege60c 38534 | . . . 4 ⊢ (∀𝑓(∀𝑧(𝑋𝑅𝑧 → 𝑧 ∈ 𝑓) → (𝑅 hereditary 𝑓 → 𝑌 ∈ 𝑓)) → ([𝑓 / 𝑓]𝑅 hereditary 𝑓 → ([𝑓 / 𝑓]∀𝑧(𝑋𝑅𝑧 → 𝑧 ∈ 𝑓) → [𝑓 / 𝑓]𝑌 ∈ 𝑓))) |
3 | sbcid 3485 | . . . 4 ⊢ ([𝑓 / 𝑓]𝑅 hereditary 𝑓 ↔ 𝑅 hereditary 𝑓) | |
4 | sbcid 3485 | . . . . 5 ⊢ ([𝑓 / 𝑓]∀𝑧(𝑋𝑅𝑧 → 𝑧 ∈ 𝑓) ↔ ∀𝑧(𝑋𝑅𝑧 → 𝑧 ∈ 𝑓)) | |
5 | sbcid 3485 | . . . . 5 ⊢ ([𝑓 / 𝑓]𝑌 ∈ 𝑓 ↔ 𝑌 ∈ 𝑓) | |
6 | 4, 5 | imbi12i 339 | . . . 4 ⊢ (([𝑓 / 𝑓]∀𝑧(𝑋𝑅𝑧 → 𝑧 ∈ 𝑓) → [𝑓 / 𝑓]𝑌 ∈ 𝑓) ↔ (∀𝑧(𝑋𝑅𝑧 → 𝑧 ∈ 𝑓) → 𝑌 ∈ 𝑓)) |
7 | 2, 3, 6 | 3imtr3g 284 | . . 3 ⊢ (∀𝑓(∀𝑧(𝑋𝑅𝑧 → 𝑧 ∈ 𝑓) → (𝑅 hereditary 𝑓 → 𝑌 ∈ 𝑓)) → (𝑅 hereditary 𝑓 → (∀𝑧(𝑋𝑅𝑧 → 𝑧 ∈ 𝑓) → 𝑌 ∈ 𝑓))) |
8 | 7 | axc4i 2169 | . 2 ⊢ (∀𝑓(∀𝑧(𝑋𝑅𝑧 → 𝑧 ∈ 𝑓) → (𝑅 hereditary 𝑓 → 𝑌 ∈ 𝑓)) → ∀𝑓(𝑅 hereditary 𝑓 → (∀𝑧(𝑋𝑅𝑧 → 𝑧 ∈ 𝑓) → 𝑌 ∈ 𝑓))) |
9 | frege91.x | . . 3 ⊢ 𝑋 ∈ 𝑈 | |
10 | frege91.y | . . 3 ⊢ 𝑌 ∈ 𝑉 | |
11 | frege91.r | . . 3 ⊢ 𝑅 ∈ 𝑊 | |
12 | 9, 10, 11 | frege90 38564 | . 2 ⊢ ((∀𝑓(∀𝑧(𝑋𝑅𝑧 → 𝑧 ∈ 𝑓) → (𝑅 hereditary 𝑓 → 𝑌 ∈ 𝑓)) → ∀𝑓(𝑅 hereditary 𝑓 → (∀𝑧(𝑋𝑅𝑧 → 𝑧 ∈ 𝑓) → 𝑌 ∈ 𝑓))) → (∀𝑓(∀𝑧(𝑋𝑅𝑧 → 𝑧 ∈ 𝑓) → (𝑅 hereditary 𝑓 → 𝑌 ∈ 𝑓)) → 𝑋(t+‘𝑅)𝑌)) |
13 | 8, 12 | ax-mp 5 | 1 ⊢ (∀𝑓(∀𝑧(𝑋𝑅𝑧 → 𝑧 ∈ 𝑓) → (𝑅 hereditary 𝑓 → 𝑌 ∈ 𝑓)) → 𝑋(t+‘𝑅)𝑌) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1521 ∈ wcel 2030 Vcvv 3231 [wsbc 3468 class class class wbr 4685 ‘cfv 5926 t+ctcl 13770 hereditary whe 38383 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 ax-frege1 38401 ax-frege2 38402 ax-frege8 38420 ax-frege52a 38468 ax-frege58b 38512 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-ifp 1033 df-3or 1055 df-3an 1056 df-tru 1526 df-fal 1529 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-int 4508 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-2nd 7211 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-er 7787 df-en 7998 df-dom 7999 df-sdom 8000 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-nn 11059 df-2 11117 df-n0 11331 df-z 11416 df-uz 11726 df-seq 12842 df-trcl 13772 df-relexp 13805 df-he 38384 |
This theorem is referenced by: frege94 38568 |
Copyright terms: Public domain | W3C validator |