Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege93 Structured version   Visualization version   GIF version

Theorem frege93 40309
Description: Necessary condition for two elements to be related by the transitive closure. Proposition 93 of [Frege1879] p. 70. (Contributed by RP, 2-Jul-2020.) (Revised by RP, 5-Jul-2020.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
frege91.x 𝑋𝑈
frege91.y 𝑌𝑉
frege91.r 𝑅𝑊
Assertion
Ref Expression
frege93 (∀𝑓(∀𝑧(𝑋𝑅𝑧𝑧𝑓) → (𝑅 hereditary 𝑓𝑌𝑓)) → 𝑋(t+‘𝑅)𝑌)
Distinct variable groups:   𝑧,𝑓,𝑅   𝑈,𝑓   𝑓,𝑉   𝑓,𝑊   𝑓,𝑋,𝑧   𝑓,𝑌
Allowed substitution hints:   𝑈(𝑧)   𝑉(𝑧)   𝑊(𝑧)   𝑌(𝑧)

Proof of Theorem frege93
StepHypRef Expression
1 vex 3499 . . . . 5 𝑓 ∈ V
21frege60c 40276 . . . 4 (∀𝑓(∀𝑧(𝑋𝑅𝑧𝑧𝑓) → (𝑅 hereditary 𝑓𝑌𝑓)) → ([𝑓 / 𝑓]𝑅 hereditary 𝑓 → ([𝑓 / 𝑓]𝑧(𝑋𝑅𝑧𝑧𝑓) → [𝑓 / 𝑓]𝑌𝑓)))
3 sbcid 3791 . . . 4 ([𝑓 / 𝑓]𝑅 hereditary 𝑓𝑅 hereditary 𝑓)
4 sbcid 3791 . . . . 5 ([𝑓 / 𝑓]𝑧(𝑋𝑅𝑧𝑧𝑓) ↔ ∀𝑧(𝑋𝑅𝑧𝑧𝑓))
5 sbcid 3791 . . . . 5 ([𝑓 / 𝑓]𝑌𝑓𝑌𝑓)
64, 5imbi12i 353 . . . 4 (([𝑓 / 𝑓]𝑧(𝑋𝑅𝑧𝑧𝑓) → [𝑓 / 𝑓]𝑌𝑓) ↔ (∀𝑧(𝑋𝑅𝑧𝑧𝑓) → 𝑌𝑓))
72, 3, 63imtr3g 297 . . 3 (∀𝑓(∀𝑧(𝑋𝑅𝑧𝑧𝑓) → (𝑅 hereditary 𝑓𝑌𝑓)) → (𝑅 hereditary 𝑓 → (∀𝑧(𝑋𝑅𝑧𝑧𝑓) → 𝑌𝑓)))
87axc4i 2341 . 2 (∀𝑓(∀𝑧(𝑋𝑅𝑧𝑧𝑓) → (𝑅 hereditary 𝑓𝑌𝑓)) → ∀𝑓(𝑅 hereditary 𝑓 → (∀𝑧(𝑋𝑅𝑧𝑧𝑓) → 𝑌𝑓)))
9 frege91.x . . 3 𝑋𝑈
10 frege91.y . . 3 𝑌𝑉
11 frege91.r . . 3 𝑅𝑊
129, 10, 11frege90 40306 . 2 ((∀𝑓(∀𝑧(𝑋𝑅𝑧𝑧𝑓) → (𝑅 hereditary 𝑓𝑌𝑓)) → ∀𝑓(𝑅 hereditary 𝑓 → (∀𝑧(𝑋𝑅𝑧𝑧𝑓) → 𝑌𝑓))) → (∀𝑓(∀𝑧(𝑋𝑅𝑧𝑧𝑓) → (𝑅 hereditary 𝑓𝑌𝑓)) → 𝑋(t+‘𝑅)𝑌))
138, 12ax-mp 5 1 (∀𝑓(∀𝑧(𝑋𝑅𝑧𝑧𝑓) → (𝑅 hereditary 𝑓𝑌𝑓)) → 𝑋(t+‘𝑅)𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1535  wcel 2114  Vcvv 3496  [wsbc 3774   class class class wbr 5068  cfv 6357  t+ctcl 14347   hereditary whe 40125
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-frege1 40143  ax-frege2 40144  ax-frege8 40162  ax-frege52a 40210  ax-frege58b 40254
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-ifp 1058  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-2 11703  df-n0 11901  df-z 11985  df-uz 12247  df-seq 13373  df-trcl 14349  df-relexp 14382  df-he 40126
This theorem is referenced by:  frege94  40310
  Copyright terms: Public domain W3C validator