MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgp0 Structured version   Visualization version   GIF version

Theorem frgp0 18880
Description: The free group is a group. (Contributed by Mario Carneiro, 1-Oct-2015.) (Revised by Mario Carneiro, 27-Feb-2016.)
Hypotheses
Ref Expression
frgp0.m 𝐺 = (freeGrp‘𝐼)
frgp0.r = ( ~FG𝐼)
Assertion
Ref Expression
frgp0 (𝐼𝑉 → (𝐺 ∈ Grp ∧ [∅] = (0g𝐺)))

Proof of Theorem frgp0
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑥 𝑦 𝑧 𝑛 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frgp0.m . . 3 𝐺 = (freeGrp‘𝐼)
2 eqid 2821 . . 3 (freeMnd‘(𝐼 × 2o)) = (freeMnd‘(𝐼 × 2o))
3 frgp0.r . . 3 = ( ~FG𝐼)
41, 2, 3frgpval 18878 . 2 (𝐼𝑉𝐺 = ((freeMnd‘(𝐼 × 2o)) /s ))
5 2on 8105 . . . . 5 2o ∈ On
6 xpexg 7467 . . . . 5 ((𝐼𝑉 ∧ 2o ∈ On) → (𝐼 × 2o) ∈ V)
75, 6mpan2 689 . . . 4 (𝐼𝑉 → (𝐼 × 2o) ∈ V)
8 eqid 2821 . . . . 5 (Base‘(freeMnd‘(𝐼 × 2o))) = (Base‘(freeMnd‘(𝐼 × 2o)))
92, 8frmdbas 18011 . . . 4 ((𝐼 × 2o) ∈ V → (Base‘(freeMnd‘(𝐼 × 2o))) = Word (𝐼 × 2o))
107, 9syl 17 . . 3 (𝐼𝑉 → (Base‘(freeMnd‘(𝐼 × 2o))) = Word (𝐼 × 2o))
1110eqcomd 2827 . 2 (𝐼𝑉 → Word (𝐼 × 2o) = (Base‘(freeMnd‘(𝐼 × 2o))))
12 eqidd 2822 . 2 (𝐼𝑉 → (+g‘(freeMnd‘(𝐼 × 2o))) = (+g‘(freeMnd‘(𝐼 × 2o))))
13 eqid 2821 . . . 4 ( I ‘Word (𝐼 × 2o)) = ( I ‘Word (𝐼 × 2o))
1413, 3efger 18838 . . 3 Er ( I ‘Word (𝐼 × 2o))
15 wrdexg 13865 . . . . 5 ((𝐼 × 2o) ∈ V → Word (𝐼 × 2o) ∈ V)
16 fvi 6735 . . . . 5 (Word (𝐼 × 2o) ∈ V → ( I ‘Word (𝐼 × 2o)) = Word (𝐼 × 2o))
177, 15, 163syl 18 . . . 4 (𝐼𝑉 → ( I ‘Word (𝐼 × 2o)) = Word (𝐼 × 2o))
18 ereq2 8291 . . . 4 (( I ‘Word (𝐼 × 2o)) = Word (𝐼 × 2o) → ( Er ( I ‘Word (𝐼 × 2o)) ↔ Er Word (𝐼 × 2o)))
1917, 18syl 17 . . 3 (𝐼𝑉 → ( Er ( I ‘Word (𝐼 × 2o)) ↔ Er Word (𝐼 × 2o)))
2014, 19mpbii 235 . 2 (𝐼𝑉 Er Word (𝐼 × 2o))
21 fvexd 6680 . 2 (𝐼𝑉 → (freeMnd‘(𝐼 × 2o)) ∈ V)
22 eqid 2821 . . . 4 (+g‘(freeMnd‘(𝐼 × 2o))) = (+g‘(freeMnd‘(𝐼 × 2o)))
231, 2, 3, 22frgpcpbl 18879 . . 3 ((𝑎 𝑏𝑐 𝑑) → (𝑎(+g‘(freeMnd‘(𝐼 × 2o)))𝑐) (𝑏(+g‘(freeMnd‘(𝐼 × 2o)))𝑑))
2423a1i 11 . 2 (𝐼𝑉 → ((𝑎 𝑏𝑐 𝑑) → (𝑎(+g‘(freeMnd‘(𝐼 × 2o)))𝑐) (𝑏(+g‘(freeMnd‘(𝐼 × 2o)))𝑑)))
252frmdmnd 18018 . . . . . 6 ((𝐼 × 2o) ∈ V → (freeMnd‘(𝐼 × 2o)) ∈ Mnd)
267, 25syl 17 . . . . 5 (𝐼𝑉 → (freeMnd‘(𝐼 × 2o)) ∈ Mnd)
27263ad2ant1 1129 . . . 4 ((𝐼𝑉𝑥 ∈ Word (𝐼 × 2o) ∧ 𝑦 ∈ Word (𝐼 × 2o)) → (freeMnd‘(𝐼 × 2o)) ∈ Mnd)
28 simp2 1133 . . . . 5 ((𝐼𝑉𝑥 ∈ Word (𝐼 × 2o) ∧ 𝑦 ∈ Word (𝐼 × 2o)) → 𝑥 ∈ Word (𝐼 × 2o))
29113ad2ant1 1129 . . . . 5 ((𝐼𝑉𝑥 ∈ Word (𝐼 × 2o) ∧ 𝑦 ∈ Word (𝐼 × 2o)) → Word (𝐼 × 2o) = (Base‘(freeMnd‘(𝐼 × 2o))))
3028, 29eleqtrd 2915 . . . 4 ((𝐼𝑉𝑥 ∈ Word (𝐼 × 2o) ∧ 𝑦 ∈ Word (𝐼 × 2o)) → 𝑥 ∈ (Base‘(freeMnd‘(𝐼 × 2o))))
31 simp3 1134 . . . . 5 ((𝐼𝑉𝑥 ∈ Word (𝐼 × 2o) ∧ 𝑦 ∈ Word (𝐼 × 2o)) → 𝑦 ∈ Word (𝐼 × 2o))
3231, 29eleqtrd 2915 . . . 4 ((𝐼𝑉𝑥 ∈ Word (𝐼 × 2o) ∧ 𝑦 ∈ Word (𝐼 × 2o)) → 𝑦 ∈ (Base‘(freeMnd‘(𝐼 × 2o))))
338, 22mndcl 17913 . . . 4 (((freeMnd‘(𝐼 × 2o)) ∈ Mnd ∧ 𝑥 ∈ (Base‘(freeMnd‘(𝐼 × 2o))) ∧ 𝑦 ∈ (Base‘(freeMnd‘(𝐼 × 2o)))) → (𝑥(+g‘(freeMnd‘(𝐼 × 2o)))𝑦) ∈ (Base‘(freeMnd‘(𝐼 × 2o))))
3427, 30, 32, 33syl3anc 1367 . . 3 ((𝐼𝑉𝑥 ∈ Word (𝐼 × 2o) ∧ 𝑦 ∈ Word (𝐼 × 2o)) → (𝑥(+g‘(freeMnd‘(𝐼 × 2o)))𝑦) ∈ (Base‘(freeMnd‘(𝐼 × 2o))))
3534, 29eleqtrrd 2916 . 2 ((𝐼𝑉𝑥 ∈ Word (𝐼 × 2o) ∧ 𝑦 ∈ Word (𝐼 × 2o)) → (𝑥(+g‘(freeMnd‘(𝐼 × 2o)))𝑦) ∈ Word (𝐼 × 2o))
3620adantr 483 . . . 4 ((𝐼𝑉 ∧ (𝑥 ∈ Word (𝐼 × 2o) ∧ 𝑦 ∈ Word (𝐼 × 2o) ∧ 𝑧 ∈ Word (𝐼 × 2o))) → Er Word (𝐼 × 2o))
3726adantr 483 . . . . . 6 ((𝐼𝑉 ∧ (𝑥 ∈ Word (𝐼 × 2o) ∧ 𝑦 ∈ Word (𝐼 × 2o) ∧ 𝑧 ∈ Word (𝐼 × 2o))) → (freeMnd‘(𝐼 × 2o)) ∈ Mnd)
38343adant3r3 1180 . . . . . 6 ((𝐼𝑉 ∧ (𝑥 ∈ Word (𝐼 × 2o) ∧ 𝑦 ∈ Word (𝐼 × 2o) ∧ 𝑧 ∈ Word (𝐼 × 2o))) → (𝑥(+g‘(freeMnd‘(𝐼 × 2o)))𝑦) ∈ (Base‘(freeMnd‘(𝐼 × 2o))))
39 simpr3 1192 . . . . . . 7 ((𝐼𝑉 ∧ (𝑥 ∈ Word (𝐼 × 2o) ∧ 𝑦 ∈ Word (𝐼 × 2o) ∧ 𝑧 ∈ Word (𝐼 × 2o))) → 𝑧 ∈ Word (𝐼 × 2o))
4011adantr 483 . . . . . . 7 ((𝐼𝑉 ∧ (𝑥 ∈ Word (𝐼 × 2o) ∧ 𝑦 ∈ Word (𝐼 × 2o) ∧ 𝑧 ∈ Word (𝐼 × 2o))) → Word (𝐼 × 2o) = (Base‘(freeMnd‘(𝐼 × 2o))))
4139, 40eleqtrd 2915 . . . . . 6 ((𝐼𝑉 ∧ (𝑥 ∈ Word (𝐼 × 2o) ∧ 𝑦 ∈ Word (𝐼 × 2o) ∧ 𝑧 ∈ Word (𝐼 × 2o))) → 𝑧 ∈ (Base‘(freeMnd‘(𝐼 × 2o))))
428, 22mndcl 17913 . . . . . 6 (((freeMnd‘(𝐼 × 2o)) ∈ Mnd ∧ (𝑥(+g‘(freeMnd‘(𝐼 × 2o)))𝑦) ∈ (Base‘(freeMnd‘(𝐼 × 2o))) ∧ 𝑧 ∈ (Base‘(freeMnd‘(𝐼 × 2o)))) → ((𝑥(+g‘(freeMnd‘(𝐼 × 2o)))𝑦)(+g‘(freeMnd‘(𝐼 × 2o)))𝑧) ∈ (Base‘(freeMnd‘(𝐼 × 2o))))
4337, 38, 41, 42syl3anc 1367 . . . . 5 ((𝐼𝑉 ∧ (𝑥 ∈ Word (𝐼 × 2o) ∧ 𝑦 ∈ Word (𝐼 × 2o) ∧ 𝑧 ∈ Word (𝐼 × 2o))) → ((𝑥(+g‘(freeMnd‘(𝐼 × 2o)))𝑦)(+g‘(freeMnd‘(𝐼 × 2o)))𝑧) ∈ (Base‘(freeMnd‘(𝐼 × 2o))))
4443, 40eleqtrrd 2916 . . . 4 ((𝐼𝑉 ∧ (𝑥 ∈ Word (𝐼 × 2o) ∧ 𝑦 ∈ Word (𝐼 × 2o) ∧ 𝑧 ∈ Word (𝐼 × 2o))) → ((𝑥(+g‘(freeMnd‘(𝐼 × 2o)))𝑦)(+g‘(freeMnd‘(𝐼 × 2o)))𝑧) ∈ Word (𝐼 × 2o))
4536, 44erref 8303 . . 3 ((𝐼𝑉 ∧ (𝑥 ∈ Word (𝐼 × 2o) ∧ 𝑦 ∈ Word (𝐼 × 2o) ∧ 𝑧 ∈ Word (𝐼 × 2o))) → ((𝑥(+g‘(freeMnd‘(𝐼 × 2o)))𝑦)(+g‘(freeMnd‘(𝐼 × 2o)))𝑧) ((𝑥(+g‘(freeMnd‘(𝐼 × 2o)))𝑦)(+g‘(freeMnd‘(𝐼 × 2o)))𝑧))
46303adant3r3 1180 . . . 4 ((𝐼𝑉 ∧ (𝑥 ∈ Word (𝐼 × 2o) ∧ 𝑦 ∈ Word (𝐼 × 2o) ∧ 𝑧 ∈ Word (𝐼 × 2o))) → 𝑥 ∈ (Base‘(freeMnd‘(𝐼 × 2o))))
47323adant3r3 1180 . . . 4 ((𝐼𝑉 ∧ (𝑥 ∈ Word (𝐼 × 2o) ∧ 𝑦 ∈ Word (𝐼 × 2o) ∧ 𝑧 ∈ Word (𝐼 × 2o))) → 𝑦 ∈ (Base‘(freeMnd‘(𝐼 × 2o))))
488, 22mndass 17914 . . . 4 (((freeMnd‘(𝐼 × 2o)) ∈ Mnd ∧ (𝑥 ∈ (Base‘(freeMnd‘(𝐼 × 2o))) ∧ 𝑦 ∈ (Base‘(freeMnd‘(𝐼 × 2o))) ∧ 𝑧 ∈ (Base‘(freeMnd‘(𝐼 × 2o))))) → ((𝑥(+g‘(freeMnd‘(𝐼 × 2o)))𝑦)(+g‘(freeMnd‘(𝐼 × 2o)))𝑧) = (𝑥(+g‘(freeMnd‘(𝐼 × 2o)))(𝑦(+g‘(freeMnd‘(𝐼 × 2o)))𝑧)))
4937, 46, 47, 41, 48syl13anc 1368 . . 3 ((𝐼𝑉 ∧ (𝑥 ∈ Word (𝐼 × 2o) ∧ 𝑦 ∈ Word (𝐼 × 2o) ∧ 𝑧 ∈ Word (𝐼 × 2o))) → ((𝑥(+g‘(freeMnd‘(𝐼 × 2o)))𝑦)(+g‘(freeMnd‘(𝐼 × 2o)))𝑧) = (𝑥(+g‘(freeMnd‘(𝐼 × 2o)))(𝑦(+g‘(freeMnd‘(𝐼 × 2o)))𝑧)))
5045, 49breqtrd 5085 . 2 ((𝐼𝑉 ∧ (𝑥 ∈ Word (𝐼 × 2o) ∧ 𝑦 ∈ Word (𝐼 × 2o) ∧ 𝑧 ∈ Word (𝐼 × 2o))) → ((𝑥(+g‘(freeMnd‘(𝐼 × 2o)))𝑦)(+g‘(freeMnd‘(𝐼 × 2o)))𝑧) (𝑥(+g‘(freeMnd‘(𝐼 × 2o)))(𝑦(+g‘(freeMnd‘(𝐼 × 2o)))𝑧)))
51 wrd0 13883 . . 3 ∅ ∈ Word (𝐼 × 2o)
5251a1i 11 . 2 (𝐼𝑉 → ∅ ∈ Word (𝐼 × 2o))
5351, 11eleqtrid 2919 . . . . . 6 (𝐼𝑉 → ∅ ∈ (Base‘(freeMnd‘(𝐼 × 2o))))
5453adantr 483 . . . . 5 ((𝐼𝑉𝑥 ∈ Word (𝐼 × 2o)) → ∅ ∈ (Base‘(freeMnd‘(𝐼 × 2o))))
5511eleq2d 2898 . . . . . 6 (𝐼𝑉 → (𝑥 ∈ Word (𝐼 × 2o) ↔ 𝑥 ∈ (Base‘(freeMnd‘(𝐼 × 2o)))))
5655biimpa 479 . . . . 5 ((𝐼𝑉𝑥 ∈ Word (𝐼 × 2o)) → 𝑥 ∈ (Base‘(freeMnd‘(𝐼 × 2o))))
572, 8, 22frmdadd 18014 . . . . 5 ((∅ ∈ (Base‘(freeMnd‘(𝐼 × 2o))) ∧ 𝑥 ∈ (Base‘(freeMnd‘(𝐼 × 2o)))) → (∅(+g‘(freeMnd‘(𝐼 × 2o)))𝑥) = (∅ ++ 𝑥))
5854, 56, 57syl2anc 586 . . . 4 ((𝐼𝑉𝑥 ∈ Word (𝐼 × 2o)) → (∅(+g‘(freeMnd‘(𝐼 × 2o)))𝑥) = (∅ ++ 𝑥))
59 ccatlid 13934 . . . . 5 (𝑥 ∈ Word (𝐼 × 2o) → (∅ ++ 𝑥) = 𝑥)
6059adantl 484 . . . 4 ((𝐼𝑉𝑥 ∈ Word (𝐼 × 2o)) → (∅ ++ 𝑥) = 𝑥)
6158, 60eqtrd 2856 . . 3 ((𝐼𝑉𝑥 ∈ Word (𝐼 × 2o)) → (∅(+g‘(freeMnd‘(𝐼 × 2o)))𝑥) = 𝑥)
6220adantr 483 . . . 4 ((𝐼𝑉𝑥 ∈ Word (𝐼 × 2o)) → Er Word (𝐼 × 2o))
63 simpr 487 . . . 4 ((𝐼𝑉𝑥 ∈ Word (𝐼 × 2o)) → 𝑥 ∈ Word (𝐼 × 2o))
6462, 63erref 8303 . . 3 ((𝐼𝑉𝑥 ∈ Word (𝐼 × 2o)) → 𝑥 𝑥)
6561, 64eqbrtrd 5081 . 2 ((𝐼𝑉𝑥 ∈ Word (𝐼 × 2o)) → (∅(+g‘(freeMnd‘(𝐼 × 2o)))𝑥) 𝑥)
66 revcl 14117 . . . 4 (𝑥 ∈ Word (𝐼 × 2o) → (reverse‘𝑥) ∈ Word (𝐼 × 2o))
6766adantl 484 . . 3 ((𝐼𝑉𝑥 ∈ Word (𝐼 × 2o)) → (reverse‘𝑥) ∈ Word (𝐼 × 2o))
68 eqid 2821 . . . . 5 (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩) = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
6968efgmf 18833 . . . 4 (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩):(𝐼 × 2o)⟶(𝐼 × 2o)
7069a1i 11 . . 3 ((𝐼𝑉𝑥 ∈ Word (𝐼 × 2o)) → (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩):(𝐼 × 2o)⟶(𝐼 × 2o))
71 wrdco 14187 . . 3 (((reverse‘𝑥) ∈ Word (𝐼 × 2o) ∧ (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩):(𝐼 × 2o)⟶(𝐼 × 2o)) → ((𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩) ∘ (reverse‘𝑥)) ∈ Word (𝐼 × 2o))
7267, 70, 71syl2anc 586 . 2 ((𝐼𝑉𝑥 ∈ Word (𝐼 × 2o)) → ((𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩) ∘ (reverse‘𝑥)) ∈ Word (𝐼 × 2o))
7311adantr 483 . . . . 5 ((𝐼𝑉𝑥 ∈ Word (𝐼 × 2o)) → Word (𝐼 × 2o) = (Base‘(freeMnd‘(𝐼 × 2o))))
7472, 73eleqtrd 2915 . . . 4 ((𝐼𝑉𝑥 ∈ Word (𝐼 × 2o)) → ((𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩) ∘ (reverse‘𝑥)) ∈ (Base‘(freeMnd‘(𝐼 × 2o))))
752, 8, 22frmdadd 18014 . . . 4 ((((𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩) ∘ (reverse‘𝑥)) ∈ (Base‘(freeMnd‘(𝐼 × 2o))) ∧ 𝑥 ∈ (Base‘(freeMnd‘(𝐼 × 2o)))) → (((𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩) ∘ (reverse‘𝑥))(+g‘(freeMnd‘(𝐼 × 2o)))𝑥) = (((𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩) ∘ (reverse‘𝑥)) ++ 𝑥))
7674, 56, 75syl2anc 586 . . 3 ((𝐼𝑉𝑥 ∈ Word (𝐼 × 2o)) → (((𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩) ∘ (reverse‘𝑥))(+g‘(freeMnd‘(𝐼 × 2o)))𝑥) = (((𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩) ∘ (reverse‘𝑥)) ++ 𝑥))
7717eleq2d 2898 . . . . 5 (𝐼𝑉 → (𝑥 ∈ ( I ‘Word (𝐼 × 2o)) ↔ 𝑥 ∈ Word (𝐼 × 2o)))
7877biimpar 480 . . . 4 ((𝐼𝑉𝑥 ∈ Word (𝐼 × 2o)) → 𝑥 ∈ ( I ‘Word (𝐼 × 2o)))
79 eqid 2821 . . . . 5 (𝑣 ∈ ( I ‘Word (𝐼 × 2o)) ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤((𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)‘𝑤)”⟩⟩))) = (𝑣 ∈ ( I ‘Word (𝐼 × 2o)) ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤((𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)‘𝑤)”⟩⟩)))
8013, 3, 68, 79efginvrel1 18848 . . . 4 (𝑥 ∈ ( I ‘Word (𝐼 × 2o)) → (((𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩) ∘ (reverse‘𝑥)) ++ 𝑥) ∅)
8178, 80syl 17 . . 3 ((𝐼𝑉𝑥 ∈ Word (𝐼 × 2o)) → (((𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩) ∘ (reverse‘𝑥)) ++ 𝑥) ∅)
8276, 81eqbrtrd 5081 . 2 ((𝐼𝑉𝑥 ∈ Word (𝐼 × 2o)) → (((𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩) ∘ (reverse‘𝑥))(+g‘(freeMnd‘(𝐼 × 2o)))𝑥) ∅)
834, 11, 12, 20, 21, 24, 35, 50, 52, 65, 72, 82qusgrp2 18211 1 (𝐼𝑉 → (𝐺 ∈ Grp ∧ [∅] = (0g𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wcel 2110  Vcvv 3495  cdif 3933  c0 4291  cop 4567  cotp 4569   class class class wbr 5059  cmpt 5139   I cid 5454   × cxp 5548  ccom 5554  Oncon0 6186  wf 6346  cfv 6350  (class class class)co 7150  cmpo 7152  1oc1o 8089  2oc2o 8090   Er wer 8280  [cec 8281  0cc0 10531  ...cfz 12886  chash 13684  Word cword 13855   ++ cconcat 13916   splice csplice 14105  reversecreverse 14114  ⟨“cs2 14197  Basecbs 16477  +gcplusg 16559  0gc0g 16707  Mndcmnd 17905  freeMndcfrmd 18006  Grpcgrp 18097   ~FG cefg 18826  freeGrpcfrgp 18827
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-ot 4570  df-uni 4833  df-int 4870  df-iun 4914  df-iin 4915  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-2o 8097  df-oadd 8100  df-er 8283  df-ec 8285  df-qs 8289  df-map 8402  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-sup 8900  df-inf 8901  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-9 11701  df-n0 11892  df-xnn0 11962  df-z 11976  df-dec 12093  df-uz 12238  df-fz 12887  df-fzo 13028  df-hash 13685  df-word 13856  df-lsw 13909  df-concat 13917  df-s1 13944  df-substr 13997  df-pfx 14027  df-splice 14106  df-reverse 14115  df-s2 14204  df-struct 16479  df-ndx 16480  df-slot 16481  df-base 16483  df-plusg 16572  df-mulr 16573  df-sca 16575  df-vsca 16576  df-ip 16577  df-tset 16578  df-ple 16579  df-ds 16581  df-0g 16709  df-imas 16775  df-qus 16776  df-mgm 17846  df-sgrp 17895  df-mnd 17906  df-frmd 18008  df-grp 18100  df-efg 18829  df-frgp 18830
This theorem is referenced by:  frgpgrp  18882  frgpinv  18884  frgpmhm  18885
  Copyright terms: Public domain W3C validator