MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgpmhm Structured version   Visualization version   GIF version

Theorem frgpmhm 18893
Description: The "natural map" from words of the free monoid to their cosets in the free group is a surjective monoid homomorphism. (Contributed by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
frgpmhm.m 𝑀 = (freeMnd‘(𝐼 × 2o))
frgpmhm.w 𝑊 = (Base‘𝑀)
frgpmhm.g 𝐺 = (freeGrp‘𝐼)
frgpmhm.r = ( ~FG𝐼)
frgpmhm.f 𝐹 = (𝑥𝑊 ↦ [𝑥] )
Assertion
Ref Expression
frgpmhm (𝐼𝑉𝐹 ∈ (𝑀 MndHom 𝐺))
Distinct variable groups:   𝑥,𝐺   𝑥,𝐼   𝑥,𝑉   𝑥,𝑊   𝑥,
Allowed substitution hints:   𝐹(𝑥)   𝑀(𝑥)

Proof of Theorem frgpmhm
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2on 8113 . . . 4 2o ∈ On
2 xpexg 7475 . . . 4 ((𝐼𝑉 ∧ 2o ∈ On) → (𝐼 × 2o) ∈ V)
31, 2mpan2 689 . . 3 (𝐼𝑉 → (𝐼 × 2o) ∈ V)
4 frgpmhm.m . . . 4 𝑀 = (freeMnd‘(𝐼 × 2o))
54frmdmnd 18026 . . 3 ((𝐼 × 2o) ∈ V → 𝑀 ∈ Mnd)
63, 5syl 17 . 2 (𝐼𝑉𝑀 ∈ Mnd)
7 frgpmhm.g . . . 4 𝐺 = (freeGrp‘𝐼)
87frgpgrp 18890 . . 3 (𝐼𝑉𝐺 ∈ Grp)
9 grpmnd 18112 . . 3 (𝐺 ∈ Grp → 𝐺 ∈ Mnd)
108, 9syl 17 . 2 (𝐼𝑉𝐺 ∈ Mnd)
11 frgpmhm.w . . . . . . . . . 10 𝑊 = (Base‘𝑀)
124, 11frmdbas 18019 . . . . . . . . 9 ((𝐼 × 2o) ∈ V → 𝑊 = Word (𝐼 × 2o))
13 wrdexg 13874 . . . . . . . . . 10 ((𝐼 × 2o) ∈ V → Word (𝐼 × 2o) ∈ V)
14 fvi 6742 . . . . . . . . . 10 (Word (𝐼 × 2o) ∈ V → ( I ‘Word (𝐼 × 2o)) = Word (𝐼 × 2o))
1513, 14syl 17 . . . . . . . . 9 ((𝐼 × 2o) ∈ V → ( I ‘Word (𝐼 × 2o)) = Word (𝐼 × 2o))
1612, 15eqtr4d 2861 . . . . . . . 8 ((𝐼 × 2o) ∈ V → 𝑊 = ( I ‘Word (𝐼 × 2o)))
173, 16syl 17 . . . . . . 7 (𝐼𝑉𝑊 = ( I ‘Word (𝐼 × 2o)))
1817eleq2d 2900 . . . . . 6 (𝐼𝑉 → (𝑥𝑊𝑥 ∈ ( I ‘Word (𝐼 × 2o))))
1918biimpa 479 . . . . 5 ((𝐼𝑉𝑥𝑊) → 𝑥 ∈ ( I ‘Word (𝐼 × 2o)))
20 frgpmhm.r . . . . . 6 = ( ~FG𝐼)
21 eqid 2823 . . . . . 6 ( I ‘Word (𝐼 × 2o)) = ( I ‘Word (𝐼 × 2o))
22 eqid 2823 . . . . . 6 (Base‘𝐺) = (Base‘𝐺)
237, 20, 21, 22frgpeccl 18889 . . . . 5 (𝑥 ∈ ( I ‘Word (𝐼 × 2o)) → [𝑥] ∈ (Base‘𝐺))
2419, 23syl 17 . . . 4 ((𝐼𝑉𝑥𝑊) → [𝑥] ∈ (Base‘𝐺))
25 frgpmhm.f . . . 4 𝐹 = (𝑥𝑊 ↦ [𝑥] )
2624, 25fmptd 6880 . . 3 (𝐼𝑉𝐹:𝑊⟶(Base‘𝐺))
2721, 20efger 18846 . . . . . . . 8 Er ( I ‘Word (𝐼 × 2o))
28 ereq2 8299 . . . . . . . . 9 (𝑊 = ( I ‘Word (𝐼 × 2o)) → ( Er 𝑊 Er ( I ‘Word (𝐼 × 2o))))
2917, 28syl 17 . . . . . . . 8 (𝐼𝑉 → ( Er 𝑊 Er ( I ‘Word (𝐼 × 2o))))
3027, 29mpbiri 260 . . . . . . 7 (𝐼𝑉 Er 𝑊)
3130adantr 483 . . . . . 6 ((𝐼𝑉 ∧ (𝑎𝑊𝑏𝑊)) → Er 𝑊)
3211fvexi 6686 . . . . . . 7 𝑊 ∈ V
3332a1i 11 . . . . . 6 ((𝐼𝑉 ∧ (𝑎𝑊𝑏𝑊)) → 𝑊 ∈ V)
3431, 33, 25divsfval 16822 . . . . 5 ((𝐼𝑉 ∧ (𝑎𝑊𝑏𝑊)) → (𝐹‘(𝑎 ++ 𝑏)) = [(𝑎 ++ 𝑏)] )
35 eqid 2823 . . . . . . . 8 (+g𝑀) = (+g𝑀)
364, 11, 35frmdadd 18022 . . . . . . 7 ((𝑎𝑊𝑏𝑊) → (𝑎(+g𝑀)𝑏) = (𝑎 ++ 𝑏))
3736adantl 484 . . . . . 6 ((𝐼𝑉 ∧ (𝑎𝑊𝑏𝑊)) → (𝑎(+g𝑀)𝑏) = (𝑎 ++ 𝑏))
3837fveq2d 6676 . . . . 5 ((𝐼𝑉 ∧ (𝑎𝑊𝑏𝑊)) → (𝐹‘(𝑎(+g𝑀)𝑏)) = (𝐹‘(𝑎 ++ 𝑏)))
3931, 33, 25divsfval 16822 . . . . . . 7 ((𝐼𝑉 ∧ (𝑎𝑊𝑏𝑊)) → (𝐹𝑎) = [𝑎] )
4031, 33, 25divsfval 16822 . . . . . . 7 ((𝐼𝑉 ∧ (𝑎𝑊𝑏𝑊)) → (𝐹𝑏) = [𝑏] )
4139, 40oveq12d 7176 . . . . . 6 ((𝐼𝑉 ∧ (𝑎𝑊𝑏𝑊)) → ((𝐹𝑎)(+g𝐺)(𝐹𝑏)) = ([𝑎] (+g𝐺)[𝑏] ))
4217eleq2d 2900 . . . . . . . . 9 (𝐼𝑉 → (𝑎𝑊𝑎 ∈ ( I ‘Word (𝐼 × 2o))))
4317eleq2d 2900 . . . . . . . . 9 (𝐼𝑉 → (𝑏𝑊𝑏 ∈ ( I ‘Word (𝐼 × 2o))))
4442, 43anbi12d 632 . . . . . . . 8 (𝐼𝑉 → ((𝑎𝑊𝑏𝑊) ↔ (𝑎 ∈ ( I ‘Word (𝐼 × 2o)) ∧ 𝑏 ∈ ( I ‘Word (𝐼 × 2o)))))
4544biimpa 479 . . . . . . 7 ((𝐼𝑉 ∧ (𝑎𝑊𝑏𝑊)) → (𝑎 ∈ ( I ‘Word (𝐼 × 2o)) ∧ 𝑏 ∈ ( I ‘Word (𝐼 × 2o))))
46 eqid 2823 . . . . . . . 8 (+g𝐺) = (+g𝐺)
4721, 7, 20, 46frgpadd 18891 . . . . . . 7 ((𝑎 ∈ ( I ‘Word (𝐼 × 2o)) ∧ 𝑏 ∈ ( I ‘Word (𝐼 × 2o))) → ([𝑎] (+g𝐺)[𝑏] ) = [(𝑎 ++ 𝑏)] )
4845, 47syl 17 . . . . . 6 ((𝐼𝑉 ∧ (𝑎𝑊𝑏𝑊)) → ([𝑎] (+g𝐺)[𝑏] ) = [(𝑎 ++ 𝑏)] )
4941, 48eqtrd 2858 . . . . 5 ((𝐼𝑉 ∧ (𝑎𝑊𝑏𝑊)) → ((𝐹𝑎)(+g𝐺)(𝐹𝑏)) = [(𝑎 ++ 𝑏)] )
5034, 38, 493eqtr4d 2868 . . . 4 ((𝐼𝑉 ∧ (𝑎𝑊𝑏𝑊)) → (𝐹‘(𝑎(+g𝑀)𝑏)) = ((𝐹𝑎)(+g𝐺)(𝐹𝑏)))
5150ralrimivva 3193 . . 3 (𝐼𝑉 → ∀𝑎𝑊𝑏𝑊 (𝐹‘(𝑎(+g𝑀)𝑏)) = ((𝐹𝑎)(+g𝐺)(𝐹𝑏)))
5232a1i 11 . . . . 5 (𝐼𝑉𝑊 ∈ V)
5330, 52, 25divsfval 16822 . . . 4 (𝐼𝑉 → (𝐹‘∅) = [∅] )
547, 20frgp0 18888 . . . . 5 (𝐼𝑉 → (𝐺 ∈ Grp ∧ [∅] = (0g𝐺)))
5554simprd 498 . . . 4 (𝐼𝑉 → [∅] = (0g𝐺))
5653, 55eqtrd 2858 . . 3 (𝐼𝑉 → (𝐹‘∅) = (0g𝐺))
5726, 51, 563jca 1124 . 2 (𝐼𝑉 → (𝐹:𝑊⟶(Base‘𝐺) ∧ ∀𝑎𝑊𝑏𝑊 (𝐹‘(𝑎(+g𝑀)𝑏)) = ((𝐹𝑎)(+g𝐺)(𝐹𝑏)) ∧ (𝐹‘∅) = (0g𝐺)))
584frmd0 18027 . . 3 ∅ = (0g𝑀)
59 eqid 2823 . . 3 (0g𝐺) = (0g𝐺)
6011, 22, 35, 46, 58, 59ismhm 17960 . 2 (𝐹 ∈ (𝑀 MndHom 𝐺) ↔ ((𝑀 ∈ Mnd ∧ 𝐺 ∈ Mnd) ∧ (𝐹:𝑊⟶(Base‘𝐺) ∧ ∀𝑎𝑊𝑏𝑊 (𝐹‘(𝑎(+g𝑀)𝑏)) = ((𝐹𝑎)(+g𝐺)(𝐹𝑏)) ∧ (𝐹‘∅) = (0g𝐺))))
616, 10, 57, 60syl21anbrc 1340 1 (𝐼𝑉𝐹 ∈ (𝑀 MndHom 𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wral 3140  Vcvv 3496  c0 4293  cmpt 5148   I cid 5461   × cxp 5555  Oncon0 6193  wf 6353  cfv 6357  (class class class)co 7158  2oc2o 8098   Er wer 8288  [cec 8289  Word cword 13864   ++ cconcat 13924  Basecbs 16485  +gcplusg 16567  0gc0g 16715  Mndcmnd 17913   MndHom cmhm 17956  freeMndcfrmd 18014  Grpcgrp 18105   ~FG cefg 18834  freeGrpcfrgp 18835
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-ot 4578  df-uni 4841  df-int 4879  df-iun 4923  df-iin 4924  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-2o 8105  df-oadd 8108  df-er 8291  df-ec 8293  df-qs 8297  df-map 8410  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-sup 8908  df-inf 8909  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-xnn0 11971  df-z 11985  df-dec 12102  df-uz 12247  df-fz 12896  df-fzo 13037  df-hash 13694  df-word 13865  df-lsw 13917  df-concat 13925  df-s1 13952  df-substr 14005  df-pfx 14035  df-splice 14114  df-reverse 14123  df-s2 14212  df-struct 16487  df-ndx 16488  df-slot 16489  df-base 16491  df-plusg 16580  df-mulr 16581  df-sca 16583  df-vsca 16584  df-ip 16585  df-tset 16586  df-ple 16587  df-ds 16589  df-0g 16717  df-imas 16783  df-qus 16784  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-mhm 17958  df-frmd 18016  df-grp 18108  df-efg 18837  df-frgp 18838
This theorem is referenced by:  frgpup3lem  18905
  Copyright terms: Public domain W3C validator