MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgpuptinv Structured version   Visualization version   GIF version

Theorem frgpuptinv 18891
Description: Any assignment of the generators to target elements can be extended (uniquely) to a homomorphism from a free monoid to an arbitrary other monoid. (Contributed by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
frgpup.b 𝐵 = (Base‘𝐻)
frgpup.n 𝑁 = (invg𝐻)
frgpup.t 𝑇 = (𝑦𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹𝑦), (𝑁‘(𝐹𝑦))))
frgpup.h (𝜑𝐻 ∈ Grp)
frgpup.i (𝜑𝐼𝑉)
frgpup.a (𝜑𝐹:𝐼𝐵)
frgpuptinv.m 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
Assertion
Ref Expression
frgpuptinv ((𝜑𝐴 ∈ (𝐼 × 2o)) → (𝑇‘(𝑀𝐴)) = (𝑁‘(𝑇𝐴)))
Distinct variable groups:   𝑦,𝑧,𝐴   𝑦,𝐹,𝑧   𝑦,𝑁,𝑧   𝑦,𝐵,𝑧   𝜑,𝑦,𝑧   𝑦,𝐼,𝑧
Allowed substitution hints:   𝑇(𝑦,𝑧)   𝐻(𝑦,𝑧)   𝑀(𝑦,𝑧)   𝑉(𝑦,𝑧)

Proof of Theorem frgpuptinv
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elxp2 5573 . . 3 (𝐴 ∈ (𝐼 × 2o) ↔ ∃𝑎𝐼𝑏 ∈ 2o 𝐴 = ⟨𝑎, 𝑏⟩)
2 frgpuptinv.m . . . . . . . . . 10 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
32efgmval 18832 . . . . . . . . 9 ((𝑎𝐼𝑏 ∈ 2o) → (𝑎𝑀𝑏) = ⟨𝑎, (1o𝑏)⟩)
43adantl 484 . . . . . . . 8 ((𝜑 ∧ (𝑎𝐼𝑏 ∈ 2o)) → (𝑎𝑀𝑏) = ⟨𝑎, (1o𝑏)⟩)
54fveq2d 6668 . . . . . . 7 ((𝜑 ∧ (𝑎𝐼𝑏 ∈ 2o)) → (𝑇‘(𝑎𝑀𝑏)) = (𝑇‘⟨𝑎, (1o𝑏)⟩))
6 df-ov 7153 . . . . . . 7 (𝑎𝑇(1o𝑏)) = (𝑇‘⟨𝑎, (1o𝑏)⟩)
75, 6syl6eqr 2874 . . . . . 6 ((𝜑 ∧ (𝑎𝐼𝑏 ∈ 2o)) → (𝑇‘(𝑎𝑀𝑏)) = (𝑎𝑇(1o𝑏)))
8 elpri 4582 . . . . . . . . 9 (𝑏 ∈ {∅, 1o} → (𝑏 = ∅ ∨ 𝑏 = 1o))
9 df2o3 8111 . . . . . . . . 9 2o = {∅, 1o}
108, 9eleq2s 2931 . . . . . . . 8 (𝑏 ∈ 2o → (𝑏 = ∅ ∨ 𝑏 = 1o))
11 simpr 487 . . . . . . . . . . . 12 ((𝜑𝑎𝐼) → 𝑎𝐼)
12 1oex 8104 . . . . . . . . . . . . . 14 1o ∈ V
1312prid2 4692 . . . . . . . . . . . . 13 1o ∈ {∅, 1o}
1413, 9eleqtrri 2912 . . . . . . . . . . . 12 1o ∈ 2o
15 1n0 8113 . . . . . . . . . . . . . . . 16 1o ≠ ∅
16 neeq1 3078 . . . . . . . . . . . . . . . 16 (𝑧 = 1o → (𝑧 ≠ ∅ ↔ 1o ≠ ∅))
1715, 16mpbiri 260 . . . . . . . . . . . . . . 15 (𝑧 = 1o𝑧 ≠ ∅)
18 ifnefalse 4478 . . . . . . . . . . . . . . 15 (𝑧 ≠ ∅ → if(𝑧 = ∅, (𝐹𝑦), (𝑁‘(𝐹𝑦))) = (𝑁‘(𝐹𝑦)))
1917, 18syl 17 . . . . . . . . . . . . . 14 (𝑧 = 1o → if(𝑧 = ∅, (𝐹𝑦), (𝑁‘(𝐹𝑦))) = (𝑁‘(𝐹𝑦)))
20 fveq2 6664 . . . . . . . . . . . . . . 15 (𝑦 = 𝑎 → (𝐹𝑦) = (𝐹𝑎))
2120fveq2d 6668 . . . . . . . . . . . . . 14 (𝑦 = 𝑎 → (𝑁‘(𝐹𝑦)) = (𝑁‘(𝐹𝑎)))
2219, 21sylan9eqr 2878 . . . . . . . . . . . . 13 ((𝑦 = 𝑎𝑧 = 1o) → if(𝑧 = ∅, (𝐹𝑦), (𝑁‘(𝐹𝑦))) = (𝑁‘(𝐹𝑎)))
23 frgpup.t . . . . . . . . . . . . 13 𝑇 = (𝑦𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹𝑦), (𝑁‘(𝐹𝑦))))
24 fvex 6677 . . . . . . . . . . . . 13 (𝑁‘(𝐹𝑎)) ∈ V
2522, 23, 24ovmpoa 7299 . . . . . . . . . . . 12 ((𝑎𝐼 ∧ 1o ∈ 2o) → (𝑎𝑇1o) = (𝑁‘(𝐹𝑎)))
2611, 14, 25sylancl 588 . . . . . . . . . . 11 ((𝜑𝑎𝐼) → (𝑎𝑇1o) = (𝑁‘(𝐹𝑎)))
27 0ex 5203 . . . . . . . . . . . . . . 15 ∅ ∈ V
2827prid1 4691 . . . . . . . . . . . . . 14 ∅ ∈ {∅, 1o}
2928, 9eleqtrri 2912 . . . . . . . . . . . . 13 ∅ ∈ 2o
30 iftrue 4472 . . . . . . . . . . . . . . 15 (𝑧 = ∅ → if(𝑧 = ∅, (𝐹𝑦), (𝑁‘(𝐹𝑦))) = (𝐹𝑦))
3130, 20sylan9eqr 2878 . . . . . . . . . . . . . 14 ((𝑦 = 𝑎𝑧 = ∅) → if(𝑧 = ∅, (𝐹𝑦), (𝑁‘(𝐹𝑦))) = (𝐹𝑎))
32 fvex 6677 . . . . . . . . . . . . . 14 (𝐹𝑎) ∈ V
3331, 23, 32ovmpoa 7299 . . . . . . . . . . . . 13 ((𝑎𝐼 ∧ ∅ ∈ 2o) → (𝑎𝑇∅) = (𝐹𝑎))
3411, 29, 33sylancl 588 . . . . . . . . . . . 12 ((𝜑𝑎𝐼) → (𝑎𝑇∅) = (𝐹𝑎))
3534fveq2d 6668 . . . . . . . . . . 11 ((𝜑𝑎𝐼) → (𝑁‘(𝑎𝑇∅)) = (𝑁‘(𝐹𝑎)))
3626, 35eqtr4d 2859 . . . . . . . . . 10 ((𝜑𝑎𝐼) → (𝑎𝑇1o) = (𝑁‘(𝑎𝑇∅)))
37 difeq2 4092 . . . . . . . . . . . . 13 (𝑏 = ∅ → (1o𝑏) = (1o ∖ ∅))
38 dif0 4331 . . . . . . . . . . . . 13 (1o ∖ ∅) = 1o
3937, 38syl6eq 2872 . . . . . . . . . . . 12 (𝑏 = ∅ → (1o𝑏) = 1o)
4039oveq2d 7166 . . . . . . . . . . 11 (𝑏 = ∅ → (𝑎𝑇(1o𝑏)) = (𝑎𝑇1o))
41 oveq2 7158 . . . . . . . . . . . 12 (𝑏 = ∅ → (𝑎𝑇𝑏) = (𝑎𝑇∅))
4241fveq2d 6668 . . . . . . . . . . 11 (𝑏 = ∅ → (𝑁‘(𝑎𝑇𝑏)) = (𝑁‘(𝑎𝑇∅)))
4340, 42eqeq12d 2837 . . . . . . . . . 10 (𝑏 = ∅ → ((𝑎𝑇(1o𝑏)) = (𝑁‘(𝑎𝑇𝑏)) ↔ (𝑎𝑇1o) = (𝑁‘(𝑎𝑇∅))))
4436, 43syl5ibrcom 249 . . . . . . . . 9 ((𝜑𝑎𝐼) → (𝑏 = ∅ → (𝑎𝑇(1o𝑏)) = (𝑁‘(𝑎𝑇𝑏))))
4536fveq2d 6668 . . . . . . . . . . 11 ((𝜑𝑎𝐼) → (𝑁‘(𝑎𝑇1o)) = (𝑁‘(𝑁‘(𝑎𝑇∅))))
46 frgpup.h . . . . . . . . . . . 12 (𝜑𝐻 ∈ Grp)
47 frgpup.a . . . . . . . . . . . . . 14 (𝜑𝐹:𝐼𝐵)
4847ffvelrnda 6845 . . . . . . . . . . . . 13 ((𝜑𝑎𝐼) → (𝐹𝑎) ∈ 𝐵)
4934, 48eqeltrd 2913 . . . . . . . . . . . 12 ((𝜑𝑎𝐼) → (𝑎𝑇∅) ∈ 𝐵)
50 frgpup.b . . . . . . . . . . . . 13 𝐵 = (Base‘𝐻)
51 frgpup.n . . . . . . . . . . . . 13 𝑁 = (invg𝐻)
5250, 51grpinvinv 18160 . . . . . . . . . . . 12 ((𝐻 ∈ Grp ∧ (𝑎𝑇∅) ∈ 𝐵) → (𝑁‘(𝑁‘(𝑎𝑇∅))) = (𝑎𝑇∅))
5346, 49, 52syl2an2r 683 . . . . . . . . . . 11 ((𝜑𝑎𝐼) → (𝑁‘(𝑁‘(𝑎𝑇∅))) = (𝑎𝑇∅))
5445, 53eqtr2d 2857 . . . . . . . . . 10 ((𝜑𝑎𝐼) → (𝑎𝑇∅) = (𝑁‘(𝑎𝑇1o)))
55 difeq2 4092 . . . . . . . . . . . . 13 (𝑏 = 1o → (1o𝑏) = (1o ∖ 1o))
56 difid 4329 . . . . . . . . . . . . 13 (1o ∖ 1o) = ∅
5755, 56syl6eq 2872 . . . . . . . . . . . 12 (𝑏 = 1o → (1o𝑏) = ∅)
5857oveq2d 7166 . . . . . . . . . . 11 (𝑏 = 1o → (𝑎𝑇(1o𝑏)) = (𝑎𝑇∅))
59 oveq2 7158 . . . . . . . . . . . 12 (𝑏 = 1o → (𝑎𝑇𝑏) = (𝑎𝑇1o))
6059fveq2d 6668 . . . . . . . . . . 11 (𝑏 = 1o → (𝑁‘(𝑎𝑇𝑏)) = (𝑁‘(𝑎𝑇1o)))
6158, 60eqeq12d 2837 . . . . . . . . . 10 (𝑏 = 1o → ((𝑎𝑇(1o𝑏)) = (𝑁‘(𝑎𝑇𝑏)) ↔ (𝑎𝑇∅) = (𝑁‘(𝑎𝑇1o))))
6254, 61syl5ibrcom 249 . . . . . . . . 9 ((𝜑𝑎𝐼) → (𝑏 = 1o → (𝑎𝑇(1o𝑏)) = (𝑁‘(𝑎𝑇𝑏))))
6344, 62jaod 855 . . . . . . . 8 ((𝜑𝑎𝐼) → ((𝑏 = ∅ ∨ 𝑏 = 1o) → (𝑎𝑇(1o𝑏)) = (𝑁‘(𝑎𝑇𝑏))))
6410, 63syl5 34 . . . . . . 7 ((𝜑𝑎𝐼) → (𝑏 ∈ 2o → (𝑎𝑇(1o𝑏)) = (𝑁‘(𝑎𝑇𝑏))))
6564impr 457 . . . . . 6 ((𝜑 ∧ (𝑎𝐼𝑏 ∈ 2o)) → (𝑎𝑇(1o𝑏)) = (𝑁‘(𝑎𝑇𝑏)))
667, 65eqtrd 2856 . . . . 5 ((𝜑 ∧ (𝑎𝐼𝑏 ∈ 2o)) → (𝑇‘(𝑎𝑀𝑏)) = (𝑁‘(𝑎𝑇𝑏)))
67 fveq2 6664 . . . . . . . 8 (𝐴 = ⟨𝑎, 𝑏⟩ → (𝑀𝐴) = (𝑀‘⟨𝑎, 𝑏⟩))
68 df-ov 7153 . . . . . . . 8 (𝑎𝑀𝑏) = (𝑀‘⟨𝑎, 𝑏⟩)
6967, 68syl6eqr 2874 . . . . . . 7 (𝐴 = ⟨𝑎, 𝑏⟩ → (𝑀𝐴) = (𝑎𝑀𝑏))
7069fveq2d 6668 . . . . . 6 (𝐴 = ⟨𝑎, 𝑏⟩ → (𝑇‘(𝑀𝐴)) = (𝑇‘(𝑎𝑀𝑏)))
71 fveq2 6664 . . . . . . . 8 (𝐴 = ⟨𝑎, 𝑏⟩ → (𝑇𝐴) = (𝑇‘⟨𝑎, 𝑏⟩))
72 df-ov 7153 . . . . . . . 8 (𝑎𝑇𝑏) = (𝑇‘⟨𝑎, 𝑏⟩)
7371, 72syl6eqr 2874 . . . . . . 7 (𝐴 = ⟨𝑎, 𝑏⟩ → (𝑇𝐴) = (𝑎𝑇𝑏))
7473fveq2d 6668 . . . . . 6 (𝐴 = ⟨𝑎, 𝑏⟩ → (𝑁‘(𝑇𝐴)) = (𝑁‘(𝑎𝑇𝑏)))
7570, 74eqeq12d 2837 . . . . 5 (𝐴 = ⟨𝑎, 𝑏⟩ → ((𝑇‘(𝑀𝐴)) = (𝑁‘(𝑇𝐴)) ↔ (𝑇‘(𝑎𝑀𝑏)) = (𝑁‘(𝑎𝑇𝑏))))
7666, 75syl5ibrcom 249 . . . 4 ((𝜑 ∧ (𝑎𝐼𝑏 ∈ 2o)) → (𝐴 = ⟨𝑎, 𝑏⟩ → (𝑇‘(𝑀𝐴)) = (𝑁‘(𝑇𝐴))))
7776rexlimdvva 3294 . . 3 (𝜑 → (∃𝑎𝐼𝑏 ∈ 2o 𝐴 = ⟨𝑎, 𝑏⟩ → (𝑇‘(𝑀𝐴)) = (𝑁‘(𝑇𝐴))))
781, 77syl5bi 244 . 2 (𝜑 → (𝐴 ∈ (𝐼 × 2o) → (𝑇‘(𝑀𝐴)) = (𝑁‘(𝑇𝐴))))
7978imp 409 1 ((𝜑𝐴 ∈ (𝐼 × 2o)) → (𝑇‘(𝑀𝐴)) = (𝑁‘(𝑇𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  wo 843   = wceq 1533  wcel 2110  wne 3016  wrex 3139  cdif 3932  c0 4290  ifcif 4466  {cpr 4562  cop 4566   × cxp 5547  wf 6345  cfv 6349  (class class class)co 7150  cmpo 7152  1oc1o 8089  2oc2o 8090  Basecbs 16477  Grpcgrp 18097  invgcminusg 18098
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-ord 6188  df-on 6189  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-1o 8096  df-2o 8097  df-0g 16709  df-mgm 17846  df-sgrp 17895  df-mnd 17906  df-grp 18100  df-minusg 18101
This theorem is referenced by:  frgpuplem  18892
  Copyright terms: Public domain W3C validator