MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgr0 Structured version   Visualization version   GIF version

Theorem frgr0 28047
Description: The null graph (graph without vertices) is a friendship graph. (Contributed by AV, 29-Mar-2021.)
Assertion
Ref Expression
frgr0 ∅ ∈ FriendGraph

Proof of Theorem frgr0
Dummy variables 𝑘 𝑙 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 usgr0 27028 . 2 ∅ ∈ USGraph
2 ral0 4459 . 2 𝑘 ∈ ∅ ∀𝑙 ∈ (∅ ∖ {𝑘})∃!𝑥 ∈ ∅ {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘∅)
3 vtxval0 26827 . . . 4 (Vtx‘∅) = ∅
43eqcomi 2833 . . 3 ∅ = (Vtx‘∅)
5 eqid 2824 . . 3 (Edg‘∅) = (Edg‘∅)
64, 5isfrgr 28042 . 2 (∅ ∈ FriendGraph ↔ (∅ ∈ USGraph ∧ ∀𝑘 ∈ ∅ ∀𝑙 ∈ (∅ ∖ {𝑘})∃!𝑥 ∈ ∅ {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘∅)))
71, 2, 6mpbir2an 709 1 ∅ ∈ FriendGraph
Colors of variables: wff setvar class
Syntax hints:  wcel 2113  wral 3141  ∃!wreu 3143  cdif 3936  wss 3939  c0 4294  {csn 4570  {cpr 4572  cfv 6358  Vtxcvtx 26784  Edgcedg 26835  USGraphcusgr 26937   FriendGraph cfrgr 28040
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-ral 3146  df-rex 3147  df-reu 3148  df-rab 3150  df-v 3499  df-sbc 3776  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4842  df-br 5070  df-opab 5132  df-mpt 5150  df-id 5463  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fv 6366  df-slot 16490  df-base 16492  df-edgf 26778  df-vtx 26786  df-iedg 26787  df-usgr 26939  df-frgr 28041
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator