Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frgr1v Structured version   Visualization version   GIF version

Theorem frgr1v 41546
Description: Any graph with (at most) one vertex is a friendship graph. (Contributed by Alexander van der Vekens, 4-Oct-2017.) (Revised by AV, 29-Mar-2021.)
Assertion
Ref Expression
frgr1v ((𝐺 ∈ USGraph ∧ (Vtx‘𝐺) = {𝑁}) → 𝐺 ∈ FriendGraph )

Proof of Theorem frgr1v
Dummy variables 𝑘 𝑙 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 471 . 2 ((𝐺 ∈ USGraph ∧ (Vtx‘𝐺) = {𝑁}) → 𝐺 ∈ USGraph )
2 ral0 3931 . . . . 5 𝑙 ∈ ∅ ∃!𝑥 ∈ {𝑁} {{𝑥, 𝑁}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)
3 sneq 4038 . . . . . . . . 9 (𝑘 = 𝑁 → {𝑘} = {𝑁})
43difeq2d 3594 . . . . . . . 8 (𝑘 = 𝑁 → ({𝑁} ∖ {𝑘}) = ({𝑁} ∖ {𝑁}))
5 difid 3805 . . . . . . . 8 ({𝑁} ∖ {𝑁}) = ∅
64, 5syl6eq 2564 . . . . . . 7 (𝑘 = 𝑁 → ({𝑁} ∖ {𝑘}) = ∅)
7 preq2 4116 . . . . . . . . . 10 (𝑘 = 𝑁 → {𝑥, 𝑘} = {𝑥, 𝑁})
87preq1d 4121 . . . . . . . . 9 (𝑘 = 𝑁 → {{𝑥, 𝑘}, {𝑥, 𝑙}} = {{𝑥, 𝑁}, {𝑥, 𝑙}})
98sseq1d 3499 . . . . . . . 8 (𝑘 = 𝑁 → ({{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ {{𝑥, 𝑁}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)))
109reubidv 3007 . . . . . . 7 (𝑘 = 𝑁 → (∃!𝑥 ∈ {𝑁} {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ∃!𝑥 ∈ {𝑁} {{𝑥, 𝑁}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)))
116, 10raleqbidv 3033 . . . . . 6 (𝑘 = 𝑁 → (∀𝑙 ∈ ({𝑁} ∖ {𝑘})∃!𝑥 ∈ {𝑁} {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ∀𝑙 ∈ ∅ ∃!𝑥 ∈ {𝑁} {{𝑥, 𝑁}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)))
1211ralsng 4068 . . . . 5 (𝑁 ∈ V → (∀𝑘 ∈ {𝑁}∀𝑙 ∈ ({𝑁} ∖ {𝑘})∃!𝑥 ∈ {𝑁} {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ∀𝑙 ∈ ∅ ∃!𝑥 ∈ {𝑁} {{𝑥, 𝑁}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)))
132, 12mpbiri 246 . . . 4 (𝑁 ∈ V → ∀𝑘 ∈ {𝑁}∀𝑙 ∈ ({𝑁} ∖ {𝑘})∃!𝑥 ∈ {𝑁} {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺))
14 snprc 4100 . . . . 5 𝑁 ∈ V ↔ {𝑁} = ∅)
15 ral0 3931 . . . . . 6 𝑘 ∈ ∅ ∀𝑙 ∈ ({𝑁} ∖ {𝑘})∃!𝑥 ∈ {𝑁} {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)
16 id 22 . . . . . . 7 ({𝑁} = ∅ → {𝑁} = ∅)
1716raleqdv 3025 . . . . . 6 ({𝑁} = ∅ → (∀𝑘 ∈ {𝑁}∀𝑙 ∈ ({𝑁} ∖ {𝑘})∃!𝑥 ∈ {𝑁} {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ∀𝑘 ∈ ∅ ∀𝑙 ∈ ({𝑁} ∖ {𝑘})∃!𝑥 ∈ {𝑁} {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)))
1815, 17mpbiri 246 . . . . 5 ({𝑁} = ∅ → ∀𝑘 ∈ {𝑁}∀𝑙 ∈ ({𝑁} ∖ {𝑘})∃!𝑥 ∈ {𝑁} {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺))
1914, 18sylbi 205 . . . 4 𝑁 ∈ V → ∀𝑘 ∈ {𝑁}∀𝑙 ∈ ({𝑁} ∖ {𝑘})∃!𝑥 ∈ {𝑁} {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺))
2013, 19pm2.61i 174 . . 3 𝑘 ∈ {𝑁}∀𝑙 ∈ ({𝑁} ∖ {𝑘})∃!𝑥 ∈ {𝑁} {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)
21 id 22 . . . . 5 ((Vtx‘𝐺) = {𝑁} → (Vtx‘𝐺) = {𝑁})
22 difeq1 3587 . . . . . 6 ((Vtx‘𝐺) = {𝑁} → ((Vtx‘𝐺) ∖ {𝑘}) = ({𝑁} ∖ {𝑘}))
23 reueq1 3021 . . . . . 6 ((Vtx‘𝐺) = {𝑁} → (∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ∃!𝑥 ∈ {𝑁} {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)))
2422, 23raleqbidv 3033 . . . . 5 ((Vtx‘𝐺) = {𝑁} → (∀𝑙 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ∀𝑙 ∈ ({𝑁} ∖ {𝑘})∃!𝑥 ∈ {𝑁} {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)))
2521, 24raleqbidv 3033 . . . 4 ((Vtx‘𝐺) = {𝑁} → (∀𝑘 ∈ (Vtx‘𝐺)∀𝑙 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ∀𝑘 ∈ {𝑁}∀𝑙 ∈ ({𝑁} ∖ {𝑘})∃!𝑥 ∈ {𝑁} {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)))
2625adantl 480 . . 3 ((𝐺 ∈ USGraph ∧ (Vtx‘𝐺) = {𝑁}) → (∀𝑘 ∈ (Vtx‘𝐺)∀𝑙 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ∀𝑘 ∈ {𝑁}∀𝑙 ∈ ({𝑁} ∖ {𝑘})∃!𝑥 ∈ {𝑁} {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)))
2720, 26mpbiri 246 . 2 ((𝐺 ∈ USGraph ∧ (Vtx‘𝐺) = {𝑁}) → ∀𝑘 ∈ (Vtx‘𝐺)∀𝑙 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺))
28 eqid 2514 . . 3 (Vtx‘𝐺) = (Vtx‘𝐺)
29 eqid 2514 . . 3 (Edg‘𝐺) = (Edg‘𝐺)
3028, 29frgrusgrfrcond 41536 . 2 (𝐺 ∈ FriendGraph ↔ (𝐺 ∈ USGraph ∧ ∀𝑘 ∈ (Vtx‘𝐺)∀𝑙 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)))
311, 27, 30sylanbrc 694 1 ((𝐺 ∈ USGraph ∧ (Vtx‘𝐺) = {𝑁}) → 𝐺 ∈ FriendGraph )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 194  wa 382   = wceq 1474  wcel 1938  wral 2800  ∃!wreu 2802  Vcvv 3077  cdif 3441  wss 3444  c0 3777  {csn 4028  {cpr 4030  cfv 5689  Vtxcvtx 40334  Edgcedga 40456   USGraph cusgr 40484   FriendGraph cfrgr 41533
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1700  ax-4 1713  ax-5 1793  ax-6 1838  ax-7 1885  ax-10 1966  ax-11 1971  ax-12 1983  ax-13 2137  ax-ext 2494  ax-nul 4616
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1699  df-sb 1831  df-eu 2366  df-clab 2501  df-cleq 2507  df-clel 2510  df-nfc 2644  df-ral 2805  df-rex 2806  df-reu 2807  df-rab 2809  df-v 3079  df-sbc 3307  df-dif 3447  df-un 3449  df-in 3451  df-ss 3458  df-nul 3778  df-if 3940  df-sn 4029  df-pr 4031  df-op 4035  df-uni 4271  df-br 4482  df-iota 5653  df-fv 5697  df-frgr 41534
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator