MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgr3vlem1 Structured version   Visualization version   GIF version

Theorem frgr3vlem1 28054
Description: Lemma 1 for frgr3v 28056. (Contributed by Alexander van der Vekens, 4-Oct-2017.) (Revised by AV, 29-Mar-2021.)
Hypotheses
Ref Expression
frgr3v.v 𝑉 = (Vtx‘𝐺)
frgr3v.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
frgr3vlem1 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → ∀𝑥𝑦(((𝑥 ∈ {𝐴, 𝐵, 𝐶} ∧ {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸) ∧ (𝑦 ∈ {𝐴, 𝐵, 𝐶} ∧ {{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ 𝐸)) → 𝑥 = 𝑦))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝑥,𝐸,𝑦   𝑥,𝐺,𝑦   𝑥,𝑉,𝑦   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦   𝑥,𝑍,𝑦

Proof of Theorem frgr3vlem1
StepHypRef Expression
1 vex 3499 . . . . . 6 𝑥 ∈ V
21eltp 4628 . . . . 5 (𝑥 ∈ {𝐴, 𝐵, 𝐶} ↔ (𝑥 = 𝐴𝑥 = 𝐵𝑥 = 𝐶))
3 vex 3499 . . . . . . . . 9 𝑦 ∈ V
43eltp 4628 . . . . . . . 8 (𝑦 ∈ {𝐴, 𝐵, 𝐶} ↔ (𝑦 = 𝐴𝑦 = 𝐵𝑦 = 𝐶))
5 eqidd 2824 . . . . . . . . . . . . . . 15 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐴 = 𝐴)
65a1i 11 . . . . . . . . . . . . . 14 ({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐴 = 𝐴))
76a1i13 27 . . . . . . . . . . . . 13 (𝑦 = 𝐴 → ({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ 𝐸 → ({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐴 = 𝐴))))
8 preq1 4671 . . . . . . . . . . . . . . 15 (𝑦 = 𝐴 → {𝑦, 𝐴} = {𝐴, 𝐴})
9 preq1 4671 . . . . . . . . . . . . . . 15 (𝑦 = 𝐴 → {𝑦, 𝐵} = {𝐴, 𝐵})
108, 9preq12d 4679 . . . . . . . . . . . . . 14 (𝑦 = 𝐴 → {{𝑦, 𝐴}, {𝑦, 𝐵}} = {{𝐴, 𝐴}, {𝐴, 𝐵}})
1110sseq1d 4000 . . . . . . . . . . . . 13 (𝑦 = 𝐴 → ({{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ 𝐸 ↔ {{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ 𝐸))
12 eqeq2 2835 . . . . . . . . . . . . . . 15 (𝑦 = 𝐴 → (𝐴 = 𝑦𝐴 = 𝐴))
1312imbi2d 343 . . . . . . . . . . . . . 14 (𝑦 = 𝐴 → ((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐴 = 𝑦) ↔ (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐴 = 𝐴)))
1413imbi2d 343 . . . . . . . . . . . . 13 (𝑦 = 𝐴 → (({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐴 = 𝑦)) ↔ ({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐴 = 𝐴))))
157, 11, 143imtr4d 296 . . . . . . . . . . . 12 (𝑦 = 𝐴 → ({{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ 𝐸 → ({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐴 = 𝑦))))
16 prex 5335 . . . . . . . . . . . . . . . . . . 19 {𝐴, 𝐴} ∈ V
17 prex 5335 . . . . . . . . . . . . . . . . . . 19 {𝐴, 𝐵} ∈ V
1816, 17prss 4755 . . . . . . . . . . . . . . . . . 18 (({𝐴, 𝐴} ∈ 𝐸 ∧ {𝐴, 𝐵} ∈ 𝐸) ↔ {{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ 𝐸)
19 frgr3v.e . . . . . . . . . . . . . . . . . . . . . . 23 𝐸 = (Edg‘𝐺)
2019usgredgne 26990 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐺 ∈ USGraph ∧ {𝐴, 𝐴} ∈ 𝐸) → 𝐴𝐴)
2120adantll 712 . . . . . . . . . . . . . . . . . . . . 21 (((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) ∧ {𝐴, 𝐴} ∈ 𝐸) → 𝐴𝐴)
22 df-ne 3019 . . . . . . . . . . . . . . . . . . . . . 22 (𝐴𝐴 ↔ ¬ 𝐴 = 𝐴)
23 eqid 2823 . . . . . . . . . . . . . . . . . . . . . . 23 𝐴 = 𝐴
2423pm2.24i 153 . . . . . . . . . . . . . . . . . . . . . 22 𝐴 = 𝐴𝐴 = 𝐵)
2522, 24sylbi 219 . . . . . . . . . . . . . . . . . . . . 21 (𝐴𝐴𝐴 = 𝐵)
2621, 25syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) ∧ {𝐴, 𝐴} ∈ 𝐸) → 𝐴 = 𝐵)
2726expcom 416 . . . . . . . . . . . . . . . . . . 19 ({𝐴, 𝐴} ∈ 𝐸 → ((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) → 𝐴 = 𝐵))
2827adantr 483 . . . . . . . . . . . . . . . . . 18 (({𝐴, 𝐴} ∈ 𝐸 ∧ {𝐴, 𝐵} ∈ 𝐸) → ((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) → 𝐴 = 𝐵))
2918, 28sylbir 237 . . . . . . . . . . . . . . . . 17 ({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ 𝐸 → ((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) → 𝐴 = 𝐵))
3029com12 32 . . . . . . . . . . . . . . . 16 ((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) → ({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ 𝐸𝐴 = 𝐵))
31303ad2ant3 1131 . . . . . . . . . . . . . . 15 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → ({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ 𝐸𝐴 = 𝐵))
3231com12 32 . . . . . . . . . . . . . 14 ({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐴 = 𝐵))
33322a1i 12 . . . . . . . . . . . . 13 (𝑦 = 𝐵 → ({{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ 𝐸 → ({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐴 = 𝐵))))
34 preq1 4671 . . . . . . . . . . . . . . 15 (𝑦 = 𝐵 → {𝑦, 𝐴} = {𝐵, 𝐴})
35 preq1 4671 . . . . . . . . . . . . . . 15 (𝑦 = 𝐵 → {𝑦, 𝐵} = {𝐵, 𝐵})
3634, 35preq12d 4679 . . . . . . . . . . . . . 14 (𝑦 = 𝐵 → {{𝑦, 𝐴}, {𝑦, 𝐵}} = {{𝐵, 𝐴}, {𝐵, 𝐵}})
3736sseq1d 4000 . . . . . . . . . . . . 13 (𝑦 = 𝐵 → ({{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ 𝐸 ↔ {{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ 𝐸))
38 eqeq2 2835 . . . . . . . . . . . . . . 15 (𝑦 = 𝐵 → (𝐴 = 𝑦𝐴 = 𝐵))
3938imbi2d 343 . . . . . . . . . . . . . 14 (𝑦 = 𝐵 → ((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐴 = 𝑦) ↔ (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐴 = 𝐵)))
4039imbi2d 343 . . . . . . . . . . . . 13 (𝑦 = 𝐵 → (({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐴 = 𝑦)) ↔ ({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐴 = 𝐵))))
4133, 37, 403imtr4d 296 . . . . . . . . . . . 12 (𝑦 = 𝐵 → ({{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ 𝐸 → ({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐴 = 𝑦))))
4223pm2.24i 153 . . . . . . . . . . . . . . . . . . . . . 22 𝐴 = 𝐴𝐴 = 𝐶)
4322, 42sylbi 219 . . . . . . . . . . . . . . . . . . . . 21 (𝐴𝐴𝐴 = 𝐶)
4421, 43syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) ∧ {𝐴, 𝐴} ∈ 𝐸) → 𝐴 = 𝐶)
4544expcom 416 . . . . . . . . . . . . . . . . . . 19 ({𝐴, 𝐴} ∈ 𝐸 → ((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) → 𝐴 = 𝐶))
4645adantr 483 . . . . . . . . . . . . . . . . . 18 (({𝐴, 𝐴} ∈ 𝐸 ∧ {𝐴, 𝐵} ∈ 𝐸) → ((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) → 𝐴 = 𝐶))
4718, 46sylbir 237 . . . . . . . . . . . . . . . . 17 ({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ 𝐸 → ((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) → 𝐴 = 𝐶))
4847com12 32 . . . . . . . . . . . . . . . 16 ((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) → ({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ 𝐸𝐴 = 𝐶))
49483ad2ant3 1131 . . . . . . . . . . . . . . 15 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → ({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ 𝐸𝐴 = 𝐶))
5049com12 32 . . . . . . . . . . . . . 14 ({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐴 = 𝐶))
51502a1i 12 . . . . . . . . . . . . 13 (𝑦 = 𝐶 → ({{𝐶, 𝐴}, {𝐶, 𝐵}} ⊆ 𝐸 → ({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐴 = 𝐶))))
52 preq1 4671 . . . . . . . . . . . . . . 15 (𝑦 = 𝐶 → {𝑦, 𝐴} = {𝐶, 𝐴})
53 preq1 4671 . . . . . . . . . . . . . . 15 (𝑦 = 𝐶 → {𝑦, 𝐵} = {𝐶, 𝐵})
5452, 53preq12d 4679 . . . . . . . . . . . . . 14 (𝑦 = 𝐶 → {{𝑦, 𝐴}, {𝑦, 𝐵}} = {{𝐶, 𝐴}, {𝐶, 𝐵}})
5554sseq1d 4000 . . . . . . . . . . . . 13 (𝑦 = 𝐶 → ({{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ 𝐸 ↔ {{𝐶, 𝐴}, {𝐶, 𝐵}} ⊆ 𝐸))
56 eqeq2 2835 . . . . . . . . . . . . . . 15 (𝑦 = 𝐶 → (𝐴 = 𝑦𝐴 = 𝐶))
5756imbi2d 343 . . . . . . . . . . . . . 14 (𝑦 = 𝐶 → ((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐴 = 𝑦) ↔ (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐴 = 𝐶)))
5857imbi2d 343 . . . . . . . . . . . . 13 (𝑦 = 𝐶 → (({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐴 = 𝑦)) ↔ ({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐴 = 𝐶))))
5951, 55, 583imtr4d 296 . . . . . . . . . . . 12 (𝑦 = 𝐶 → ({{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ 𝐸 → ({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐴 = 𝑦))))
6015, 41, 593jaoi 1423 . . . . . . . . . . 11 ((𝑦 = 𝐴𝑦 = 𝐵𝑦 = 𝐶) → ({{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ 𝐸 → ({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐴 = 𝑦))))
61 preq1 4671 . . . . . . . . . . . . . . 15 (𝑥 = 𝐴 → {𝑥, 𝐴} = {𝐴, 𝐴})
62 preq1 4671 . . . . . . . . . . . . . . 15 (𝑥 = 𝐴 → {𝑥, 𝐵} = {𝐴, 𝐵})
6361, 62preq12d 4679 . . . . . . . . . . . . . 14 (𝑥 = 𝐴 → {{𝑥, 𝐴}, {𝑥, 𝐵}} = {{𝐴, 𝐴}, {𝐴, 𝐵}})
6463sseq1d 4000 . . . . . . . . . . . . 13 (𝑥 = 𝐴 → ({{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸 ↔ {{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ 𝐸))
65 eqeq1 2827 . . . . . . . . . . . . . 14 (𝑥 = 𝐴 → (𝑥 = 𝑦𝐴 = 𝑦))
6665imbi2d 343 . . . . . . . . . . . . 13 (𝑥 = 𝐴 → ((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝑥 = 𝑦) ↔ (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐴 = 𝑦)))
6764, 66imbi12d 347 . . . . . . . . . . . 12 (𝑥 = 𝐴 → (({{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝑥 = 𝑦)) ↔ ({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐴 = 𝑦))))
6867imbi2d 343 . . . . . . . . . . 11 (𝑥 = 𝐴 → (({{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ 𝐸 → ({{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝑥 = 𝑦))) ↔ ({{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ 𝐸 → ({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐴 = 𝑦)))))
6960, 68syl5ibr 248 . . . . . . . . . 10 (𝑥 = 𝐴 → ((𝑦 = 𝐴𝑦 = 𝐵𝑦 = 𝐶) → ({{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ 𝐸 → ({{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝑥 = 𝑦)))))
70 prex 5335 . . . . . . . . . . . . . . . . . . 19 {𝐵, 𝐴} ∈ V
71 prex 5335 . . . . . . . . . . . . . . . . . . 19 {𝐵, 𝐵} ∈ V
7270, 71prss 4755 . . . . . . . . . . . . . . . . . 18 (({𝐵, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝐵} ∈ 𝐸) ↔ {{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ 𝐸)
7319usgredgne 26990 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐺 ∈ USGraph ∧ {𝐵, 𝐵} ∈ 𝐸) → 𝐵𝐵)
7473adantll 712 . . . . . . . . . . . . . . . . . . . . 21 (((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) ∧ {𝐵, 𝐵} ∈ 𝐸) → 𝐵𝐵)
75 df-ne 3019 . . . . . . . . . . . . . . . . . . . . . 22 (𝐵𝐵 ↔ ¬ 𝐵 = 𝐵)
76 eqid 2823 . . . . . . . . . . . . . . . . . . . . . . 23 𝐵 = 𝐵
7776pm2.24i 153 . . . . . . . . . . . . . . . . . . . . . 22 𝐵 = 𝐵𝐵 = 𝐴)
7875, 77sylbi 219 . . . . . . . . . . . . . . . . . . . . 21 (𝐵𝐵𝐵 = 𝐴)
7974, 78syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) ∧ {𝐵, 𝐵} ∈ 𝐸) → 𝐵 = 𝐴)
8079expcom 416 . . . . . . . . . . . . . . . . . . 19 ({𝐵, 𝐵} ∈ 𝐸 → ((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) → 𝐵 = 𝐴))
8180adantl 484 . . . . . . . . . . . . . . . . . 18 (({𝐵, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝐵} ∈ 𝐸) → ((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) → 𝐵 = 𝐴))
8272, 81sylbir 237 . . . . . . . . . . . . . . . . 17 ({{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ 𝐸 → ((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) → 𝐵 = 𝐴))
8382com12 32 . . . . . . . . . . . . . . . 16 ((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) → ({{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ 𝐸𝐵 = 𝐴))
84833ad2ant3 1131 . . . . . . . . . . . . . . 15 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → ({{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ 𝐸𝐵 = 𝐴))
8584com12 32 . . . . . . . . . . . . . 14 ({{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐵 = 𝐴))
86852a1i 12 . . . . . . . . . . . . 13 (𝑦 = 𝐴 → ({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ 𝐸 → ({{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐵 = 𝐴))))
87 eqeq2 2835 . . . . . . . . . . . . . . 15 (𝑦 = 𝐴 → (𝐵 = 𝑦𝐵 = 𝐴))
8887imbi2d 343 . . . . . . . . . . . . . 14 (𝑦 = 𝐴 → ((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐵 = 𝑦) ↔ (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐵 = 𝐴)))
8988imbi2d 343 . . . . . . . . . . . . 13 (𝑦 = 𝐴 → (({{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐵 = 𝑦)) ↔ ({{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐵 = 𝐴))))
9086, 11, 893imtr4d 296 . . . . . . . . . . . 12 (𝑦 = 𝐴 → ({{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ 𝐸 → ({{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐵 = 𝑦))))
91 eqidd 2824 . . . . . . . . . . . . . . 15 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐵 = 𝐵)
9291a1i 11 . . . . . . . . . . . . . 14 ({{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐵 = 𝐵))
9392a1i13 27 . . . . . . . . . . . . 13 (𝑦 = 𝐵 → ({{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ 𝐸 → ({{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐵 = 𝐵))))
94 eqeq2 2835 . . . . . . . . . . . . . . 15 (𝑦 = 𝐵 → (𝐵 = 𝑦𝐵 = 𝐵))
9594imbi2d 343 . . . . . . . . . . . . . 14 (𝑦 = 𝐵 → ((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐵 = 𝑦) ↔ (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐵 = 𝐵)))
9695imbi2d 343 . . . . . . . . . . . . 13 (𝑦 = 𝐵 → (({{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐵 = 𝑦)) ↔ ({{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐵 = 𝐵))))
9793, 37, 963imtr4d 296 . . . . . . . . . . . 12 (𝑦 = 𝐵 → ({{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ 𝐸 → ({{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐵 = 𝑦))))
9876pm2.24i 153 . . . . . . . . . . . . . . . . . . . . . 22 𝐵 = 𝐵𝐵 = 𝐶)
9975, 98sylbi 219 . . . . . . . . . . . . . . . . . . . . 21 (𝐵𝐵𝐵 = 𝐶)
10074, 99syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) ∧ {𝐵, 𝐵} ∈ 𝐸) → 𝐵 = 𝐶)
101100expcom 416 . . . . . . . . . . . . . . . . . . 19 ({𝐵, 𝐵} ∈ 𝐸 → ((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) → 𝐵 = 𝐶))
102101adantl 484 . . . . . . . . . . . . . . . . . 18 (({𝐵, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝐵} ∈ 𝐸) → ((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) → 𝐵 = 𝐶))
10372, 102sylbir 237 . . . . . . . . . . . . . . . . 17 ({{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ 𝐸 → ((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) → 𝐵 = 𝐶))
104103com12 32 . . . . . . . . . . . . . . . 16 ((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) → ({{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ 𝐸𝐵 = 𝐶))
1051043ad2ant3 1131 . . . . . . . . . . . . . . 15 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → ({{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ 𝐸𝐵 = 𝐶))
106105com12 32 . . . . . . . . . . . . . 14 ({{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐵 = 𝐶))
1071062a1i 12 . . . . . . . . . . . . 13 (𝑦 = 𝐶 → ({{𝐶, 𝐴}, {𝐶, 𝐵}} ⊆ 𝐸 → ({{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐵 = 𝐶))))
108 eqeq2 2835 . . . . . . . . . . . . . . 15 (𝑦 = 𝐶 → (𝐵 = 𝑦𝐵 = 𝐶))
109108imbi2d 343 . . . . . . . . . . . . . 14 (𝑦 = 𝐶 → ((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐵 = 𝑦) ↔ (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐵 = 𝐶)))
110109imbi2d 343 . . . . . . . . . . . . 13 (𝑦 = 𝐶 → (({{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐵 = 𝑦)) ↔ ({{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐵 = 𝐶))))
111107, 55, 1103imtr4d 296 . . . . . . . . . . . 12 (𝑦 = 𝐶 → ({{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ 𝐸 → ({{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐵 = 𝑦))))
11290, 97, 1113jaoi 1423 . . . . . . . . . . 11 ((𝑦 = 𝐴𝑦 = 𝐵𝑦 = 𝐶) → ({{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ 𝐸 → ({{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐵 = 𝑦))))
113 preq1 4671 . . . . . . . . . . . . . . 15 (𝑥 = 𝐵 → {𝑥, 𝐴} = {𝐵, 𝐴})
114 preq1 4671 . . . . . . . . . . . . . . 15 (𝑥 = 𝐵 → {𝑥, 𝐵} = {𝐵, 𝐵})
115113, 114preq12d 4679 . . . . . . . . . . . . . 14 (𝑥 = 𝐵 → {{𝑥, 𝐴}, {𝑥, 𝐵}} = {{𝐵, 𝐴}, {𝐵, 𝐵}})
116115sseq1d 4000 . . . . . . . . . . . . 13 (𝑥 = 𝐵 → ({{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸 ↔ {{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ 𝐸))
117 eqeq1 2827 . . . . . . . . . . . . . 14 (𝑥 = 𝐵 → (𝑥 = 𝑦𝐵 = 𝑦))
118117imbi2d 343 . . . . . . . . . . . . 13 (𝑥 = 𝐵 → ((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝑥 = 𝑦) ↔ (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐵 = 𝑦)))
119116, 118imbi12d 347 . . . . . . . . . . . 12 (𝑥 = 𝐵 → (({{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝑥 = 𝑦)) ↔ ({{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐵 = 𝑦))))
120119imbi2d 343 . . . . . . . . . . 11 (𝑥 = 𝐵 → (({{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ 𝐸 → ({{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝑥 = 𝑦))) ↔ ({{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ 𝐸 → ({{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐵 = 𝑦)))))
121112, 120syl5ibr 248 . . . . . . . . . 10 (𝑥 = 𝐵 → ((𝑦 = 𝐴𝑦 = 𝐵𝑦 = 𝐶) → ({{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ 𝐸 → ({{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝑥 = 𝑦)))))
12223pm2.24i 153 . . . . . . . . . . . . . . . . . . . . . 22 𝐴 = 𝐴𝐶 = 𝐴)
12322, 122sylbi 219 . . . . . . . . . . . . . . . . . . . . 21 (𝐴𝐴𝐶 = 𝐴)
12421, 123syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) ∧ {𝐴, 𝐴} ∈ 𝐸) → 𝐶 = 𝐴)
125124expcom 416 . . . . . . . . . . . . . . . . . . 19 ({𝐴, 𝐴} ∈ 𝐸 → ((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) → 𝐶 = 𝐴))
126125adantr 483 . . . . . . . . . . . . . . . . . 18 (({𝐴, 𝐴} ∈ 𝐸 ∧ {𝐴, 𝐵} ∈ 𝐸) → ((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) → 𝐶 = 𝐴))
12718, 126sylbir 237 . . . . . . . . . . . . . . . . 17 ({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ 𝐸 → ((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) → 𝐶 = 𝐴))
128127com12 32 . . . . . . . . . . . . . . . 16 ((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) → ({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ 𝐸𝐶 = 𝐴))
1291283ad2ant3 1131 . . . . . . . . . . . . . . 15 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → ({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ 𝐸𝐶 = 𝐴))
130129com12 32 . . . . . . . . . . . . . 14 ({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐶 = 𝐴))
131130a1i13 27 . . . . . . . . . . . . 13 (𝑦 = 𝐴 → ({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ 𝐸 → ({{𝐶, 𝐴}, {𝐶, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐶 = 𝐴))))
132 eqeq2 2835 . . . . . . . . . . . . . . 15 (𝑦 = 𝐴 → (𝐶 = 𝑦𝐶 = 𝐴))
133132imbi2d 343 . . . . . . . . . . . . . 14 (𝑦 = 𝐴 → ((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐶 = 𝑦) ↔ (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐶 = 𝐴)))
134133imbi2d 343 . . . . . . . . . . . . 13 (𝑦 = 𝐴 → (({{𝐶, 𝐴}, {𝐶, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐶 = 𝑦)) ↔ ({{𝐶, 𝐴}, {𝐶, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐶 = 𝐴))))
135131, 11, 1343imtr4d 296 . . . . . . . . . . . 12 (𝑦 = 𝐴 → ({{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ 𝐸 → ({{𝐶, 𝐴}, {𝐶, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐶 = 𝑦))))
136 pm2.21 123 . . . . . . . . . . . . . . . . . . . . . . 23 𝐵 = 𝐵 → (𝐵 = 𝐵 → ((𝐴𝑋𝐵𝑌𝐶𝑍) → 𝐶 = 𝐵)))
13775, 136sylbi 219 . . . . . . . . . . . . . . . . . . . . . 22 (𝐵𝐵 → (𝐵 = 𝐵 → ((𝐴𝑋𝐵𝑌𝐶𝑍) → 𝐶 = 𝐵)))
13874, 76, 137mpisyl 21 . . . . . . . . . . . . . . . . . . . . 21 (((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) ∧ {𝐵, 𝐵} ∈ 𝐸) → ((𝐴𝑋𝐵𝑌𝐶𝑍) → 𝐶 = 𝐵))
139138expcom 416 . . . . . . . . . . . . . . . . . . . 20 ({𝐵, 𝐵} ∈ 𝐸 → ((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) → ((𝐴𝑋𝐵𝑌𝐶𝑍) → 𝐶 = 𝐵)))
140139adantl 484 . . . . . . . . . . . . . . . . . . 19 (({𝐵, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝐵} ∈ 𝐸) → ((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) → ((𝐴𝑋𝐵𝑌𝐶𝑍) → 𝐶 = 𝐵)))
14172, 140sylbir 237 . . . . . . . . . . . . . . . . . 18 ({{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ 𝐸 → ((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) → ((𝐴𝑋𝐵𝑌𝐶𝑍) → 𝐶 = 𝐵)))
142141com13 88 . . . . . . . . . . . . . . . . 17 ((𝐴𝑋𝐵𝑌𝐶𝑍) → ((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) → ({{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ 𝐸𝐶 = 𝐵)))
143142a1d 25 . . . . . . . . . . . . . . . 16 ((𝐴𝑋𝐵𝑌𝐶𝑍) → ((𝐴𝐵𝐴𝐶𝐵𝐶) → ((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) → ({{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ 𝐸𝐶 = 𝐵))))
1441433imp 1107 . . . . . . . . . . . . . . 15 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → ({{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ 𝐸𝐶 = 𝐵))
145144com12 32 . . . . . . . . . . . . . 14 ({{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐶 = 𝐵))
146145a1i13 27 . . . . . . . . . . . . 13 (𝑦 = 𝐵 → ({{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ 𝐸 → ({{𝐶, 𝐴}, {𝐶, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐶 = 𝐵))))
147 eqeq2 2835 . . . . . . . . . . . . . . 15 (𝑦 = 𝐵 → (𝐶 = 𝑦𝐶 = 𝐵))
148147imbi2d 343 . . . . . . . . . . . . . 14 (𝑦 = 𝐵 → ((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐶 = 𝑦) ↔ (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐶 = 𝐵)))
149148imbi2d 343 . . . . . . . . . . . . 13 (𝑦 = 𝐵 → (({{𝐶, 𝐴}, {𝐶, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐶 = 𝑦)) ↔ ({{𝐶, 𝐴}, {𝐶, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐶 = 𝐵))))
150146, 37, 1493imtr4d 296 . . . . . . . . . . . 12 (𝑦 = 𝐵 → ({{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ 𝐸 → ({{𝐶, 𝐴}, {𝐶, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐶 = 𝑦))))
151 eqidd 2824 . . . . . . . . . . . . . . 15 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐶 = 𝐶)
152151a1i 11 . . . . . . . . . . . . . 14 ({{𝐶, 𝐴}, {𝐶, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐶 = 𝐶))
153152a1i13 27 . . . . . . . . . . . . 13 (𝑦 = 𝐶 → ({{𝐶, 𝐴}, {𝐶, 𝐵}} ⊆ 𝐸 → ({{𝐶, 𝐴}, {𝐶, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐶 = 𝐶))))
154 eqeq2 2835 . . . . . . . . . . . . . . 15 (𝑦 = 𝐶 → (𝐶 = 𝑦𝐶 = 𝐶))
155154imbi2d 343 . . . . . . . . . . . . . 14 (𝑦 = 𝐶 → ((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐶 = 𝑦) ↔ (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐶 = 𝐶)))
156155imbi2d 343 . . . . . . . . . . . . 13 (𝑦 = 𝐶 → (({{𝐶, 𝐴}, {𝐶, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐶 = 𝑦)) ↔ ({{𝐶, 𝐴}, {𝐶, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐶 = 𝐶))))
157153, 55, 1563imtr4d 296 . . . . . . . . . . . 12 (𝑦 = 𝐶 → ({{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ 𝐸 → ({{𝐶, 𝐴}, {𝐶, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐶 = 𝑦))))
158135, 150, 1573jaoi 1423 . . . . . . . . . . 11 ((𝑦 = 𝐴𝑦 = 𝐵𝑦 = 𝐶) → ({{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ 𝐸 → ({{𝐶, 𝐴}, {𝐶, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐶 = 𝑦))))
159 preq1 4671 . . . . . . . . . . . . . . 15 (𝑥 = 𝐶 → {𝑥, 𝐴} = {𝐶, 𝐴})
160 preq1 4671 . . . . . . . . . . . . . . 15 (𝑥 = 𝐶 → {𝑥, 𝐵} = {𝐶, 𝐵})
161159, 160preq12d 4679 . . . . . . . . . . . . . 14 (𝑥 = 𝐶 → {{𝑥, 𝐴}, {𝑥, 𝐵}} = {{𝐶, 𝐴}, {𝐶, 𝐵}})
162161sseq1d 4000 . . . . . . . . . . . . 13 (𝑥 = 𝐶 → ({{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸 ↔ {{𝐶, 𝐴}, {𝐶, 𝐵}} ⊆ 𝐸))
163 eqeq1 2827 . . . . . . . . . . . . . 14 (𝑥 = 𝐶 → (𝑥 = 𝑦𝐶 = 𝑦))
164163imbi2d 343 . . . . . . . . . . . . 13 (𝑥 = 𝐶 → ((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝑥 = 𝑦) ↔ (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐶 = 𝑦)))
165162, 164imbi12d 347 . . . . . . . . . . . 12 (𝑥 = 𝐶 → (({{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝑥 = 𝑦)) ↔ ({{𝐶, 𝐴}, {𝐶, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐶 = 𝑦))))
166165imbi2d 343 . . . . . . . . . . 11 (𝑥 = 𝐶 → (({{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ 𝐸 → ({{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝑥 = 𝑦))) ↔ ({{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ 𝐸 → ({{𝐶, 𝐴}, {𝐶, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐶 = 𝑦)))))
167158, 166syl5ibr 248 . . . . . . . . . 10 (𝑥 = 𝐶 → ((𝑦 = 𝐴𝑦 = 𝐵𝑦 = 𝐶) → ({{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ 𝐸 → ({{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝑥 = 𝑦)))))
16869, 121, 1673jaoi 1423 . . . . . . . . 9 ((𝑥 = 𝐴𝑥 = 𝐵𝑥 = 𝐶) → ((𝑦 = 𝐴𝑦 = 𝐵𝑦 = 𝐶) → ({{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ 𝐸 → ({{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝑥 = 𝑦)))))
169168com3l 89 . . . . . . . 8 ((𝑦 = 𝐴𝑦 = 𝐵𝑦 = 𝐶) → ({{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ 𝐸 → ((𝑥 = 𝐴𝑥 = 𝐵𝑥 = 𝐶) → ({{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝑥 = 𝑦)))))
1704, 169sylbi 219 . . . . . . 7 (𝑦 ∈ {𝐴, 𝐵, 𝐶} → ({{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ 𝐸 → ((𝑥 = 𝐴𝑥 = 𝐵𝑥 = 𝐶) → ({{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝑥 = 𝑦)))))
171170imp 409 . . . . . 6 ((𝑦 ∈ {𝐴, 𝐵, 𝐶} ∧ {{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ 𝐸) → ((𝑥 = 𝐴𝑥 = 𝐵𝑥 = 𝐶) → ({{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝑥 = 𝑦))))
172171com3l 89 . . . . 5 ((𝑥 = 𝐴𝑥 = 𝐵𝑥 = 𝐶) → ({{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸 → ((𝑦 ∈ {𝐴, 𝐵, 𝐶} ∧ {{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ 𝐸) → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝑥 = 𝑦))))
1732, 172sylbi 219 . . . 4 (𝑥 ∈ {𝐴, 𝐵, 𝐶} → ({{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸 → ((𝑦 ∈ {𝐴, 𝐵, 𝐶} ∧ {{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ 𝐸) → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝑥 = 𝑦))))
174173imp31 420 . . 3 (((𝑥 ∈ {𝐴, 𝐵, 𝐶} ∧ {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸) ∧ (𝑦 ∈ {𝐴, 𝐵, 𝐶} ∧ {{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ 𝐸)) → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝑥 = 𝑦))
175174com12 32 . 2 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → (((𝑥 ∈ {𝐴, 𝐵, 𝐶} ∧ {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸) ∧ (𝑦 ∈ {𝐴, 𝐵, 𝐶} ∧ {{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ 𝐸)) → 𝑥 = 𝑦))
176175alrimivv 1929 1 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → ∀𝑥𝑦(((𝑥 ∈ {𝐴, 𝐵, 𝐶} ∧ {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸) ∧ (𝑦 ∈ {𝐴, 𝐵, 𝐶} ∧ {{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ 𝐸)) → 𝑥 = 𝑦))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398  w3o 1082  w3a 1083  wal 1535   = wceq 1537  wcel 2114  wne 3018  wss 3938  {cpr 4571  {ctp 4573  cfv 6357  Vtxcvtx 26783  Edgcedg 26834  USGraphcusgr 26936
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-dju 9332  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-2 11703  df-n0 11901  df-z 11985  df-uz 12247  df-fz 12896  df-hash 13694  df-edg 26835  df-umgr 26870  df-usgr 26938
This theorem is referenced by:  frgr3vlem2  28055
  Copyright terms: Public domain W3C validator