MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgr3vlem2 Structured version   Visualization version   GIF version

Theorem frgr3vlem2 27002
Description: Lemma 2 for frgr3v 27003. (Contributed by Alexander van der Vekens, 4-Oct-2017.) (Revised by AV, 29-Mar-2021.)
Hypotheses
Ref Expression
frgr3v.v 𝑉 = (Vtx‘𝐺)
frgr3v.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
frgr3vlem2 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → ((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph ) → (∃!𝑥 ∈ {𝐴, 𝐵, 𝐶} {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸 ↔ ({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑥,𝐸   𝑥,𝐺   𝑥,𝑉   𝑥,𝑋   𝑥,𝑌   𝑥,𝑍

Proof of Theorem frgr3vlem2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-reu 2914 . . 3 (∃!𝑥 ∈ {𝐴, 𝐵, 𝐶} {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸 ↔ ∃!𝑥(𝑥 ∈ {𝐴, 𝐵, 𝐶} ∧ {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸))
2 eleq1 2686 . . . . . 6 (𝑥 = 𝑦 → (𝑥 ∈ {𝐴, 𝐵, 𝐶} ↔ 𝑦 ∈ {𝐴, 𝐵, 𝐶}))
3 preq1 4238 . . . . . . . 8 (𝑥 = 𝑦 → {𝑥, 𝐴} = {𝑦, 𝐴})
4 preq1 4238 . . . . . . . 8 (𝑥 = 𝑦 → {𝑥, 𝐵} = {𝑦, 𝐵})
53, 4preq12d 4246 . . . . . . 7 (𝑥 = 𝑦 → {{𝑥, 𝐴}, {𝑥, 𝐵}} = {{𝑦, 𝐴}, {𝑦, 𝐵}})
65sseq1d 3611 . . . . . 6 (𝑥 = 𝑦 → ({{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸 ↔ {{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ 𝐸))
72, 6anbi12d 746 . . . . 5 (𝑥 = 𝑦 → ((𝑥 ∈ {𝐴, 𝐵, 𝐶} ∧ {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸) ↔ (𝑦 ∈ {𝐴, 𝐵, 𝐶} ∧ {{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ 𝐸)))
87eu4 2517 . . . 4 (∃!𝑥(𝑥 ∈ {𝐴, 𝐵, 𝐶} ∧ {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸) ↔ (∃𝑥(𝑥 ∈ {𝐴, 𝐵, 𝐶} ∧ {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸) ∧ ∀𝑥𝑦(((𝑥 ∈ {𝐴, 𝐵, 𝐶} ∧ {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸) ∧ (𝑦 ∈ {𝐴, 𝐵, 𝐶} ∧ {{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ 𝐸)) → 𝑥 = 𝑦)))
9 frgr3v.v . . . . . . . 8 𝑉 = (Vtx‘𝐺)
10 frgr3v.e . . . . . . . 8 𝐸 = (Edg‘𝐺)
119, 10frgr3vlem1 27001 . . . . . . 7 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph )) → ∀𝑥𝑦(((𝑥 ∈ {𝐴, 𝐵, 𝐶} ∧ {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸) ∧ (𝑦 ∈ {𝐴, 𝐵, 𝐶} ∧ {{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ 𝐸)) → 𝑥 = 𝑦))
12113expa 1262 . . . . . 6 ((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph )) → ∀𝑥𝑦(((𝑥 ∈ {𝐴, 𝐵, 𝐶} ∧ {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸) ∧ (𝑦 ∈ {𝐴, 𝐵, 𝐶} ∧ {{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ 𝐸)) → 𝑥 = 𝑦))
1312biantrud 528 . . . . 5 ((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph )) → (∃𝑥(𝑥 ∈ {𝐴, 𝐵, 𝐶} ∧ {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸) ↔ (∃𝑥(𝑥 ∈ {𝐴, 𝐵, 𝐶} ∧ {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸) ∧ ∀𝑥𝑦(((𝑥 ∈ {𝐴, 𝐵, 𝐶} ∧ {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸) ∧ (𝑦 ∈ {𝐴, 𝐵, 𝐶} ∧ {{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ 𝐸)) → 𝑥 = 𝑦))))
14 vex 3189 . . . . . . . . . . 11 𝑥 ∈ V
1514eltp 4201 . . . . . . . . . 10 (𝑥 ∈ {𝐴, 𝐵, 𝐶} ↔ (𝑥 = 𝐴𝑥 = 𝐵𝑥 = 𝐶))
16 preq1 4238 . . . . . . . . . . . . . 14 (𝑥 = 𝐴 → {𝑥, 𝐴} = {𝐴, 𝐴})
17 preq1 4238 . . . . . . . . . . . . . 14 (𝑥 = 𝐴 → {𝑥, 𝐵} = {𝐴, 𝐵})
1816, 17preq12d 4246 . . . . . . . . . . . . 13 (𝑥 = 𝐴 → {{𝑥, 𝐴}, {𝑥, 𝐵}} = {{𝐴, 𝐴}, {𝐴, 𝐵}})
1918sseq1d 3611 . . . . . . . . . . . 12 (𝑥 = 𝐴 → ({{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸 ↔ {{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ 𝐸))
20 prex 4870 . . . . . . . . . . . . . 14 {𝐴, 𝐴} ∈ V
21 prex 4870 . . . . . . . . . . . . . 14 {𝐴, 𝐵} ∈ V
2220, 21prss 4319 . . . . . . . . . . . . 13 (({𝐴, 𝐴} ∈ 𝐸 ∧ {𝐴, 𝐵} ∈ 𝐸) ↔ {{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ 𝐸)
2310usgredgne 25991 . . . . . . . . . . . . . . . . . . 19 ((𝐺 ∈ USGraph ∧ {𝐴, 𝐴} ∈ 𝐸) → 𝐴𝐴)
2423adantll 749 . . . . . . . . . . . . . . . . . 18 (((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph ) ∧ {𝐴, 𝐴} ∈ 𝐸) → 𝐴𝐴)
25 df-ne 2791 . . . . . . . . . . . . . . . . . . 19 (𝐴𝐴 ↔ ¬ 𝐴 = 𝐴)
26 eqid 2621 . . . . . . . . . . . . . . . . . . . 20 𝐴 = 𝐴
2726pm2.24i 146 . . . . . . . . . . . . . . . . . . 19 𝐴 = 𝐴 → ({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸))
2825, 27sylbi 207 . . . . . . . . . . . . . . . . . 18 (𝐴𝐴 → ({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸))
2924, 28syl 17 . . . . . . . . . . . . . . . . 17 (((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph ) ∧ {𝐴, 𝐴} ∈ 𝐸) → ({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸))
3029ex 450 . . . . . . . . . . . . . . . 16 ((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph ) → ({𝐴, 𝐴} ∈ 𝐸 → ({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸)))
3130adantl 482 . . . . . . . . . . . . . . 15 ((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph )) → ({𝐴, 𝐴} ∈ 𝐸 → ({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸)))
3231com12 32 . . . . . . . . . . . . . 14 ({𝐴, 𝐴} ∈ 𝐸 → ((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph )) → ({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸)))
3332adantr 481 . . . . . . . . . . . . 13 (({𝐴, 𝐴} ∈ 𝐸 ∧ {𝐴, 𝐵} ∈ 𝐸) → ((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph )) → ({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸)))
3422, 33sylbir 225 . . . . . . . . . . . 12 ({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ 𝐸 → ((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph )) → ({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸)))
3519, 34syl6bi 243 . . . . . . . . . . 11 (𝑥 = 𝐴 → ({{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸 → ((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph )) → ({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸))))
36 preq1 4238 . . . . . . . . . . . . . 14 (𝑥 = 𝐵 → {𝑥, 𝐴} = {𝐵, 𝐴})
37 preq1 4238 . . . . . . . . . . . . . 14 (𝑥 = 𝐵 → {𝑥, 𝐵} = {𝐵, 𝐵})
3836, 37preq12d 4246 . . . . . . . . . . . . 13 (𝑥 = 𝐵 → {{𝑥, 𝐴}, {𝑥, 𝐵}} = {{𝐵, 𝐴}, {𝐵, 𝐵}})
3938sseq1d 3611 . . . . . . . . . . . 12 (𝑥 = 𝐵 → ({{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸 ↔ {{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ 𝐸))
40 prex 4870 . . . . . . . . . . . . . 14 {𝐵, 𝐴} ∈ V
41 prex 4870 . . . . . . . . . . . . . 14 {𝐵, 𝐵} ∈ V
4240, 41prss 4319 . . . . . . . . . . . . 13 (({𝐵, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝐵} ∈ 𝐸) ↔ {{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ 𝐸)
4310usgredgne 25991 . . . . . . . . . . . . . . . . . . 19 ((𝐺 ∈ USGraph ∧ {𝐵, 𝐵} ∈ 𝐸) → 𝐵𝐵)
4443adantll 749 . . . . . . . . . . . . . . . . . 18 (((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph ) ∧ {𝐵, 𝐵} ∈ 𝐸) → 𝐵𝐵)
45 df-ne 2791 . . . . . . . . . . . . . . . . . . 19 (𝐵𝐵 ↔ ¬ 𝐵 = 𝐵)
46 eqid 2621 . . . . . . . . . . . . . . . . . . . 20 𝐵 = 𝐵
4746pm2.24i 146 . . . . . . . . . . . . . . . . . . 19 𝐵 = 𝐵 → ({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸))
4845, 47sylbi 207 . . . . . . . . . . . . . . . . . 18 (𝐵𝐵 → ({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸))
4944, 48syl 17 . . . . . . . . . . . . . . . . 17 (((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph ) ∧ {𝐵, 𝐵} ∈ 𝐸) → ({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸))
5049ex 450 . . . . . . . . . . . . . . . 16 ((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph ) → ({𝐵, 𝐵} ∈ 𝐸 → ({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸)))
5150adantl 482 . . . . . . . . . . . . . . 15 ((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph )) → ({𝐵, 𝐵} ∈ 𝐸 → ({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸)))
5251com12 32 . . . . . . . . . . . . . 14 ({𝐵, 𝐵} ∈ 𝐸 → ((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph )) → ({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸)))
5352adantl 482 . . . . . . . . . . . . 13 (({𝐵, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝐵} ∈ 𝐸) → ((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph )) → ({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸)))
5442, 53sylbir 225 . . . . . . . . . . . 12 ({{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ 𝐸 → ((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph )) → ({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸)))
5539, 54syl6bi 243 . . . . . . . . . . 11 (𝑥 = 𝐵 → ({{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸 → ((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph )) → ({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸))))
56 preq1 4238 . . . . . . . . . . . . . 14 (𝑥 = 𝐶 → {𝑥, 𝐴} = {𝐶, 𝐴})
57 preq1 4238 . . . . . . . . . . . . . 14 (𝑥 = 𝐶 → {𝑥, 𝐵} = {𝐶, 𝐵})
5856, 57preq12d 4246 . . . . . . . . . . . . 13 (𝑥 = 𝐶 → {{𝑥, 𝐴}, {𝑥, 𝐵}} = {{𝐶, 𝐴}, {𝐶, 𝐵}})
5958sseq1d 3611 . . . . . . . . . . . 12 (𝑥 = 𝐶 → ({{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸 ↔ {{𝐶, 𝐴}, {𝐶, 𝐵}} ⊆ 𝐸))
60 prex 4870 . . . . . . . . . . . . . 14 {𝐶, 𝐴} ∈ V
61 prex 4870 . . . . . . . . . . . . . 14 {𝐶, 𝐵} ∈ V
6260, 61prss 4319 . . . . . . . . . . . . 13 (({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸) ↔ {{𝐶, 𝐴}, {𝐶, 𝐵}} ⊆ 𝐸)
63 ax-1 6 . . . . . . . . . . . . 13 (({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸) → ((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph )) → ({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸)))
6462, 63sylbir 225 . . . . . . . . . . . 12 ({{𝐶, 𝐴}, {𝐶, 𝐵}} ⊆ 𝐸 → ((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph )) → ({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸)))
6559, 64syl6bi 243 . . . . . . . . . . 11 (𝑥 = 𝐶 → ({{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸 → ((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph )) → ({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸))))
6635, 55, 653jaoi 1388 . . . . . . . . . 10 ((𝑥 = 𝐴𝑥 = 𝐵𝑥 = 𝐶) → ({{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸 → ((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph )) → ({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸))))
6715, 66sylbi 207 . . . . . . . . 9 (𝑥 ∈ {𝐴, 𝐵, 𝐶} → ({{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸 → ((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph )) → ({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸))))
6867imp 445 . . . . . . . 8 ((𝑥 ∈ {𝐴, 𝐵, 𝐶} ∧ {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸) → ((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph )) → ({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸)))
6968com12 32 . . . . . . 7 ((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph )) → ((𝑥 ∈ {𝐴, 𝐵, 𝐶} ∧ {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸) → ({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸)))
7069exlimdv 1858 . . . . . 6 ((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph )) → (∃𝑥(𝑥 ∈ {𝐴, 𝐵, 𝐶} ∧ {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸) → ({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸)))
71 prssi 4321 . . . . . . . . . . 11 (({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸) → {{𝐶, 𝐴}, {𝐶, 𝐵}} ⊆ 𝐸)
7271adantl 482 . . . . . . . . . 10 (((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph )) ∧ ({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸)) → {{𝐶, 𝐴}, {𝐶, 𝐵}} ⊆ 𝐸)
73723mix3d 1236 . . . . . . . . 9 (((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph )) ∧ ({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸)) → ({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ 𝐸 ∨ {{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ 𝐸 ∨ {{𝐶, 𝐴}, {𝐶, 𝐵}} ⊆ 𝐸))
7419, 39, 59rextpg 4208 . . . . . . . . . 10 ((𝐴𝑋𝐵𝑌𝐶𝑍) → (∃𝑥 ∈ {𝐴, 𝐵, 𝐶} {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸 ↔ ({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ 𝐸 ∨ {{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ 𝐸 ∨ {{𝐶, 𝐴}, {𝐶, 𝐵}} ⊆ 𝐸)))
7574ad3antrrr 765 . . . . . . . . 9 (((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph )) ∧ ({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸)) → (∃𝑥 ∈ {𝐴, 𝐵, 𝐶} {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸 ↔ ({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ 𝐸 ∨ {{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ 𝐸 ∨ {{𝐶, 𝐴}, {𝐶, 𝐵}} ⊆ 𝐸)))
7673, 75mpbird 247 . . . . . . . 8 (((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph )) ∧ ({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸)) → ∃𝑥 ∈ {𝐴, 𝐵, 𝐶} {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸)
77 df-rex 2913 . . . . . . . 8 (∃𝑥 ∈ {𝐴, 𝐵, 𝐶} {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸 ↔ ∃𝑥(𝑥 ∈ {𝐴, 𝐵, 𝐶} ∧ {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸))
7876, 77sylib 208 . . . . . . 7 (((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph )) ∧ ({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸)) → ∃𝑥(𝑥 ∈ {𝐴, 𝐵, 𝐶} ∧ {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸))
7978ex 450 . . . . . 6 ((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph )) → (({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸) → ∃𝑥(𝑥 ∈ {𝐴, 𝐵, 𝐶} ∧ {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸)))
8070, 79impbid 202 . . . . 5 ((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph )) → (∃𝑥(𝑥 ∈ {𝐴, 𝐵, 𝐶} ∧ {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸) ↔ ({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸)))
8113, 80bitr3d 270 . . . 4 ((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph )) → ((∃𝑥(𝑥 ∈ {𝐴, 𝐵, 𝐶} ∧ {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸) ∧ ∀𝑥𝑦(((𝑥 ∈ {𝐴, 𝐵, 𝐶} ∧ {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸) ∧ (𝑦 ∈ {𝐴, 𝐵, 𝐶} ∧ {{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ 𝐸)) → 𝑥 = 𝑦)) ↔ ({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸)))
828, 81syl5bb 272 . . 3 ((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph )) → (∃!𝑥(𝑥 ∈ {𝐴, 𝐵, 𝐶} ∧ {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸) ↔ ({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸)))
831, 82syl5bb 272 . 2 ((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph )) → (∃!𝑥 ∈ {𝐴, 𝐵, 𝐶} {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸 ↔ ({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸)))
8483ex 450 1 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → ((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph ) → (∃!𝑥 ∈ {𝐴, 𝐵, 𝐶} {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸 ↔ ({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3o 1035  w3a 1036  wal 1478   = wceq 1480  wex 1701  wcel 1987  ∃!weu 2469  wne 2790  wrex 2908  ∃!wreu 2909  wss 3555  {cpr 4150  {ctp 4152  cfv 5847  Vtxcvtx 25774  Edgcedg 25839   USGraph cusgr 25937
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-oadd 7509  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-card 8709  df-cda 8934  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-nn 10965  df-2 11023  df-n0 11237  df-z 11322  df-uz 11632  df-fz 12269  df-hash 13058  df-edg 25840  df-umgr 25874  df-usgr 25939
This theorem is referenced by:  frgr3v  27003
  Copyright terms: Public domain W3C validator