Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgrancvvdeqlem1 Structured version   Visualization version   GIF version

Theorem frgrancvvdeqlem1 26295
 Description: Lemma 1 for frgrancvvdeq 26307. (Contributed by Alexander van der Vekens, 22-Dec-2017.)
Hypotheses
Ref Expression
frgrancvvdeq.nx 𝐷 = (⟨𝑉, 𝐸⟩ Neighbors 𝑋)
frgrancvvdeq.ny 𝑁 = (⟨𝑉, 𝐸⟩ Neighbors 𝑌)
frgrancvvdeq.x (𝜑𝑋𝑉)
frgrancvvdeq.y (𝜑𝑌𝑉)
frgrancvvdeq.ne (𝜑𝑋𝑌)
frgrancvvdeq.xy (𝜑𝑌𝐷)
frgrancvvdeq.f (𝜑𝑉 FriendGrph 𝐸)
frgrancvvdeq.a 𝐴 = (𝑥𝐷 ↦ (𝑦𝑁 {𝑥, 𝑦} ∈ ran 𝐸))
Assertion
Ref Expression
frgrancvvdeqlem1 ((𝜑𝑥𝐷) → 𝑌 ∈ (𝑉 ∖ {𝑥}))
Distinct variable groups:   𝑦,𝐷   𝑥,𝑦,𝑉   𝑥,𝐸,𝑦   𝑦,𝑌   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥,𝑦)   𝐷(𝑥)   𝑁(𝑥,𝑦)   𝑋(𝑥,𝑦)   𝑌(𝑥)

Proof of Theorem frgrancvvdeqlem1
StepHypRef Expression
1 frgrancvvdeq.y . . 3 (𝜑𝑌𝑉)
21adantr 479 . 2 ((𝜑𝑥𝐷) → 𝑌𝑉)
3 frgrancvvdeq.xy . . . . 5 (𝜑𝑌𝐷)
4 df-nel 2687 . . . . . 6 (𝑌𝐷 ↔ ¬ 𝑌𝐷)
5 eleq1a 2587 . . . . . . 7 (𝑥𝐷 → (𝑌 = 𝑥𝑌𝐷))
65con3rr3 149 . . . . . 6 𝑌𝐷 → (𝑥𝐷 → ¬ 𝑌 = 𝑥))
74, 6sylbi 205 . . . . 5 (𝑌𝐷 → (𝑥𝐷 → ¬ 𝑌 = 𝑥))
83, 7syl 17 . . . 4 (𝜑 → (𝑥𝐷 → ¬ 𝑌 = 𝑥))
98imp 443 . . 3 ((𝜑𝑥𝐷) → ¬ 𝑌 = 𝑥)
10 elsng 4042 . . . . 5 (𝑌𝑉 → (𝑌 ∈ {𝑥} ↔ 𝑌 = 𝑥))
111, 10syl 17 . . . 4 (𝜑 → (𝑌 ∈ {𝑥} ↔ 𝑌 = 𝑥))
1211adantr 479 . . 3 ((𝜑𝑥𝐷) → (𝑌 ∈ {𝑥} ↔ 𝑌 = 𝑥))
139, 12mtbird 313 . 2 ((𝜑𝑥𝐷) → ¬ 𝑌 ∈ {𝑥})
142, 13eldifd 3455 1 ((𝜑𝑥𝐷) → 𝑌 ∈ (𝑉 ∖ {𝑥}))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 194   ∧ wa 382   = wceq 1474   ∈ wcel 1938   ≠ wne 2684   ∉ wnel 2685   ∖ cdif 3441  {csn 4028  {cpr 4030  ⟨cop 4034   class class class wbr 4481   ↦ cmpt 4541  ran crn 4933  ℩crio 6387  (class class class)co 6426   Neighbors cnbgra 25684   FriendGrph cfrgra 26253 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1700  ax-4 1713  ax-5 1793  ax-6 1838  ax-7 1885  ax-10 1966  ax-11 1971  ax-12 1983  ax-13 2137  ax-ext 2494 This theorem depends on definitions:  df-bi 195  df-an 384  df-tru 1477  df-ex 1695  df-nf 1699  df-sb 1831  df-clab 2501  df-cleq 2507  df-clel 2510  df-nfc 2644  df-nel 2687  df-v 3079  df-dif 3447  df-sn 4029 This theorem is referenced by:  frgrancvvdeqlem3  26297  frgrancvvdeqlem4  26298
 Copyright terms: Public domain W3C validator