MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgraregorufr Structured version   Visualization version   GIF version

Theorem frgraregorufr 26346
Description: If there is a vertex having degree 𝐾 for each (nonnegative integer) 𝐾 in a friendship graph, then either all vertices have degree 𝐾 or there is a universal friend. This corresponds to claim 2 in [Huneke] p. 2: "Suppose there is a vertex of degree k > 1. ... all vertices have degree k, unless there is a universal friend. ... It follows that G is k-regular, i.e., the degree of every vertex is k". (Contributed by Alexander van der Vekens, 1-Jan-2018.)
Assertion
Ref Expression
frgraregorufr (𝑉 FriendGrph 𝐸 → (∃𝑎𝑉 ((𝑉 VDeg 𝐸)‘𝑎) = 𝐾 → (∀𝑣𝑉 ((𝑉 VDeg 𝐸)‘𝑣) = 𝐾 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ ran 𝐸)))
Distinct variable groups:   𝑣,𝑎,𝑤,𝐾   𝑉,𝑎,𝑣,𝑤   𝐸,𝑎,𝑣,𝑤

Proof of Theorem frgraregorufr
StepHypRef Expression
1 frgraregorufr0 26345 . 2 (𝑉 FriendGrph 𝐸 → (∀𝑣𝑉 ((𝑉 VDeg 𝐸)‘𝑣) = 𝐾 ∨ ∀𝑣𝑉 ((𝑉 VDeg 𝐸)‘𝑣) ≠ 𝐾 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ ran 𝐸))
2 orc 398 . . . 4 (∀𝑣𝑉 ((𝑉 VDeg 𝐸)‘𝑣) = 𝐾 → (∀𝑣𝑉 ((𝑉 VDeg 𝐸)‘𝑣) = 𝐾 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ ran 𝐸))
32a1d 25 . . 3 (∀𝑣𝑉 ((𝑉 VDeg 𝐸)‘𝑣) = 𝐾 → (∃𝑎𝑉 ((𝑉 VDeg 𝐸)‘𝑎) = 𝐾 → (∀𝑣𝑉 ((𝑉 VDeg 𝐸)‘𝑣) = 𝐾 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ ran 𝐸)))
4 fveq2 6088 . . . . . . . 8 (𝑣 = 𝑎 → ((𝑉 VDeg 𝐸)‘𝑣) = ((𝑉 VDeg 𝐸)‘𝑎))
54neeq1d 2840 . . . . . . 7 (𝑣 = 𝑎 → (((𝑉 VDeg 𝐸)‘𝑣) ≠ 𝐾 ↔ ((𝑉 VDeg 𝐸)‘𝑎) ≠ 𝐾))
65rspcva 3279 . . . . . 6 ((𝑎𝑉 ∧ ∀𝑣𝑉 ((𝑉 VDeg 𝐸)‘𝑣) ≠ 𝐾) → ((𝑉 VDeg 𝐸)‘𝑎) ≠ 𝐾)
7 df-ne 2781 . . . . . . 7 (((𝑉 VDeg 𝐸)‘𝑎) ≠ 𝐾 ↔ ¬ ((𝑉 VDeg 𝐸)‘𝑎) = 𝐾)
8 pm2.21 118 . . . . . . 7 (¬ ((𝑉 VDeg 𝐸)‘𝑎) = 𝐾 → (((𝑉 VDeg 𝐸)‘𝑎) = 𝐾 → (∀𝑣𝑉 ((𝑉 VDeg 𝐸)‘𝑣) = 𝐾 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ ran 𝐸)))
97, 8sylbi 205 . . . . . 6 (((𝑉 VDeg 𝐸)‘𝑎) ≠ 𝐾 → (((𝑉 VDeg 𝐸)‘𝑎) = 𝐾 → (∀𝑣𝑉 ((𝑉 VDeg 𝐸)‘𝑣) = 𝐾 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ ran 𝐸)))
106, 9syl 17 . . . . 5 ((𝑎𝑉 ∧ ∀𝑣𝑉 ((𝑉 VDeg 𝐸)‘𝑣) ≠ 𝐾) → (((𝑉 VDeg 𝐸)‘𝑎) = 𝐾 → (∀𝑣𝑉 ((𝑉 VDeg 𝐸)‘𝑣) = 𝐾 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ ran 𝐸)))
1110ancoms 467 . . . 4 ((∀𝑣𝑉 ((𝑉 VDeg 𝐸)‘𝑣) ≠ 𝐾𝑎𝑉) → (((𝑉 VDeg 𝐸)‘𝑎) = 𝐾 → (∀𝑣𝑉 ((𝑉 VDeg 𝐸)‘𝑣) = 𝐾 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ ran 𝐸)))
1211rexlimdva 3012 . . 3 (∀𝑣𝑉 ((𝑉 VDeg 𝐸)‘𝑣) ≠ 𝐾 → (∃𝑎𝑉 ((𝑉 VDeg 𝐸)‘𝑎) = 𝐾 → (∀𝑣𝑉 ((𝑉 VDeg 𝐸)‘𝑣) = 𝐾 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ ran 𝐸)))
13 olc 397 . . . 4 (∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ ran 𝐸 → (∀𝑣𝑉 ((𝑉 VDeg 𝐸)‘𝑣) = 𝐾 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ ran 𝐸))
1413a1d 25 . . 3 (∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ ran 𝐸 → (∃𝑎𝑉 ((𝑉 VDeg 𝐸)‘𝑎) = 𝐾 → (∀𝑣𝑉 ((𝑉 VDeg 𝐸)‘𝑣) = 𝐾 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ ran 𝐸)))
153, 12, 143jaoi 1382 . 2 ((∀𝑣𝑉 ((𝑉 VDeg 𝐸)‘𝑣) = 𝐾 ∨ ∀𝑣𝑉 ((𝑉 VDeg 𝐸)‘𝑣) ≠ 𝐾 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ ran 𝐸) → (∃𝑎𝑉 ((𝑉 VDeg 𝐸)‘𝑎) = 𝐾 → (∀𝑣𝑉 ((𝑉 VDeg 𝐸)‘𝑣) = 𝐾 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ ran 𝐸)))
161, 15syl 17 1 (𝑉 FriendGrph 𝐸 → (∃𝑎𝑉 ((𝑉 VDeg 𝐸)‘𝑎) = 𝐾 → (∀𝑣𝑉 ((𝑉 VDeg 𝐸)‘𝑣) = 𝐾 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ ran 𝐸)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 381  wa 382  w3o 1029   = wceq 1474  wcel 1976  wne 2779  wral 2895  wrex 2896  cdif 3536  {csn 4124  {cpr 4126   class class class wbr 4577  ran crn 5029  cfv 5790  (class class class)co 6527   VDeg cvdg 26186   FriendGrph cfrgra 26281
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2232  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824  ax-cnex 9848  ax-resscn 9849  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-addrcl 9853  ax-mulcl 9854  ax-mulrcl 9855  ax-mulcom 9856  ax-addass 9857  ax-mulass 9858  ax-distr 9859  ax-i2m1 9860  ax-1ne0 9861  ax-1rid 9862  ax-rnegex 9863  ax-rrecex 9864  ax-cnre 9865  ax-pre-lttri 9866  ax-pre-lttrn 9867  ax-pre-ltadd 9868  ax-pre-mulgt0 9869
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-int 4405  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-om 6935  df-1st 7036  df-2nd 7037  df-wrecs 7271  df-recs 7332  df-rdg 7370  df-1o 7424  df-2o 7425  df-oadd 7428  df-er 7606  df-en 7819  df-dom 7820  df-sdom 7821  df-fin 7822  df-card 8625  df-cda 8850  df-pnf 9932  df-mnf 9933  df-xr 9934  df-ltxr 9935  df-le 9936  df-sub 10119  df-neg 10120  df-nn 10868  df-2 10926  df-n0 11140  df-z 11211  df-uz 11520  df-xadd 11779  df-fz 12153  df-hash 12935  df-usgra 25628  df-nbgra 25715  df-vdgr 26187  df-frgra 26282
This theorem is referenced by:  frgraregorufrg  26365
  Copyright terms: Public domain W3C validator