MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgrncvvdeqlemB Structured version   Visualization version   GIF version

Theorem frgrncvvdeqlemB 27029
Description: Lemma B for frgrncvvdeq 27032. This corresponds to statement 2 in [Huneke] p. 1: "The map is one-to-one since z in N(x) is uniquely determined as the common neighbor of x and a(x)". (Contributed by Alexander van der Vekens, 23-Dec-2017.) (Revised by AV, 10-May-2021.)
Hypotheses
Ref Expression
frgrncvvdeq.v1 𝑉 = (Vtx‘𝐺)
frgrncvvdeq.e 𝐸 = (Edg‘𝐺)
frgrncvvdeq.nx 𝐷 = (𝐺 NeighbVtx 𝑋)
frgrncvvdeq.ny 𝑁 = (𝐺 NeighbVtx 𝑌)
frgrncvvdeq.x (𝜑𝑋𝑉)
frgrncvvdeq.y (𝜑𝑌𝑉)
frgrncvvdeq.ne (𝜑𝑋𝑌)
frgrncvvdeq.xy (𝜑𝑌𝐷)
frgrncvvdeq.f (𝜑𝐺 ∈ FriendGraph )
frgrncvvdeq.a 𝐴 = (𝑥𝐷 ↦ (𝑦𝑁 {𝑥, 𝑦} ∈ 𝐸))
Assertion
Ref Expression
frgrncvvdeqlemB (𝜑𝐴:𝐷1-1→ran 𝐴)
Distinct variable groups:   𝑦,𝐷   𝑦,𝐺   𝑦,𝑉   𝑦,𝑌   𝜑,𝑦,𝑥   𝑦,𝐸   𝑦,𝑁   𝑥,𝐷   𝑥,𝑁   𝜑,𝑥   𝑥,𝐸
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐺(𝑥)   𝑉(𝑥)   𝑋(𝑥,𝑦)   𝑌(𝑥)

Proof of Theorem frgrncvvdeqlemB
Dummy variables 𝑢 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frgrncvvdeq.v1 . . 3 𝑉 = (Vtx‘𝐺)
2 frgrncvvdeq.e . . 3 𝐸 = (Edg‘𝐺)
3 frgrncvvdeq.nx . . 3 𝐷 = (𝐺 NeighbVtx 𝑋)
4 frgrncvvdeq.ny . . 3 𝑁 = (𝐺 NeighbVtx 𝑌)
5 frgrncvvdeq.x . . 3 (𝜑𝑋𝑉)
6 frgrncvvdeq.y . . 3 (𝜑𝑌𝑉)
7 frgrncvvdeq.ne . . 3 (𝜑𝑋𝑌)
8 frgrncvvdeq.xy . . 3 (𝜑𝑌𝐷)
9 frgrncvvdeq.f . . 3 (𝜑𝐺 ∈ FriendGraph )
10 frgrncvvdeq.a . . 3 𝐴 = (𝑥𝐷 ↦ (𝑦𝑁 {𝑥, 𝑦} ∈ 𝐸))
111, 2, 3, 4, 5, 6, 7, 8, 9, 10frgrncvvdeqlem5 27025 . 2 (𝜑𝐴:𝐷𝑁)
12 ffrn 6014 . . . . 5 (𝐴:𝐷𝑁𝐴:𝐷⟶ran 𝐴)
1312adantl 482 . . . 4 ((𝜑𝐴:𝐷𝑁) → 𝐴:𝐷⟶ran 𝐴)
14 ffvelrn 6314 . . . . . . . . . 10 ((𝐴:𝐷𝑁𝑢𝐷) → (𝐴𝑢) ∈ 𝑁)
1514ad5ant23 1301 . . . . . . . . 9 (((((𝜑𝐴:𝐷𝑁) ∧ 𝑢𝐷) ∧ 𝑤𝐷) ∧ (𝐴𝑢) = (𝐴𝑤)) → (𝐴𝑢) ∈ 𝑁)
161, 2, 3, 4, 5, 6, 7, 8, 9, 10frgrncvvdeqlem2 27022 . . . . . . . . . . . . 13 (𝜑𝑋𝑁)
17 preq1 4243 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = 𝑢 → {𝑥, 𝑦} = {𝑢, 𝑦})
1817eleq1d 2688 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑢 → ({𝑥, 𝑦} ∈ 𝐸 ↔ {𝑢, 𝑦} ∈ 𝐸))
1918riotabidv 6568 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑢 → (𝑦𝑁 {𝑥, 𝑦} ∈ 𝐸) = (𝑦𝑁 {𝑢, 𝑦} ∈ 𝐸))
2019cbvmptv 4715 . . . . . . . . . . . . . . . . . . . 20 (𝑥𝐷 ↦ (𝑦𝑁 {𝑥, 𝑦} ∈ 𝐸)) = (𝑢𝐷 ↦ (𝑦𝑁 {𝑢, 𝑦} ∈ 𝐸))
2110, 20eqtri 2648 . . . . . . . . . . . . . . . . . . 19 𝐴 = (𝑢𝐷 ↦ (𝑦𝑁 {𝑢, 𝑦} ∈ 𝐸))
221, 2, 3, 4, 5, 6, 7, 8, 9, 21frgrncvvdeqlem7 27027 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑢𝐷) → {𝑢, (𝐴𝑢)} ∈ 𝐸)
23 preq1 4243 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = 𝑤 → {𝑥, 𝑦} = {𝑤, 𝑦})
2423eleq1d 2688 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑤 → ({𝑥, 𝑦} ∈ 𝐸 ↔ {𝑤, 𝑦} ∈ 𝐸))
2524riotabidv 6568 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑤 → (𝑦𝑁 {𝑥, 𝑦} ∈ 𝐸) = (𝑦𝑁 {𝑤, 𝑦} ∈ 𝐸))
2625cbvmptv 4715 . . . . . . . . . . . . . . . . . . . 20 (𝑥𝐷 ↦ (𝑦𝑁 {𝑥, 𝑦} ∈ 𝐸)) = (𝑤𝐷 ↦ (𝑦𝑁 {𝑤, 𝑦} ∈ 𝐸))
2710, 26eqtri 2648 . . . . . . . . . . . . . . . . . . 19 𝐴 = (𝑤𝐷 ↦ (𝑦𝑁 {𝑤, 𝑦} ∈ 𝐸))
281, 2, 3, 4, 5, 6, 7, 8, 9, 27frgrncvvdeqlem7 27027 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑤𝐷) → {𝑤, (𝐴𝑤)} ∈ 𝐸)
2922, 28anim12dan 881 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑢𝐷𝑤𝐷)) → ({𝑢, (𝐴𝑢)} ∈ 𝐸 ∧ {𝑤, (𝐴𝑤)} ∈ 𝐸))
30 preq2 4244 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐴𝑤) = (𝐴𝑢) → {𝑤, (𝐴𝑤)} = {𝑤, (𝐴𝑢)})
3130eleq1d 2688 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐴𝑤) = (𝐴𝑢) → ({𝑤, (𝐴𝑤)} ∈ 𝐸 ↔ {𝑤, (𝐴𝑢)} ∈ 𝐸))
3231anbi2d 739 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴𝑤) = (𝐴𝑢) → (({𝑢, (𝐴𝑢)} ∈ 𝐸 ∧ {𝑤, (𝐴𝑤)} ∈ 𝐸) ↔ ({𝑢, (𝐴𝑢)} ∈ 𝐸 ∧ {𝑤, (𝐴𝑢)} ∈ 𝐸)))
3332eqcoms 2634 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴𝑢) = (𝐴𝑤) → (({𝑢, (𝐴𝑢)} ∈ 𝐸 ∧ {𝑤, (𝐴𝑤)} ∈ 𝐸) ↔ ({𝑢, (𝐴𝑢)} ∈ 𝐸 ∧ {𝑤, (𝐴𝑢)} ∈ 𝐸)))
3433biimpa 501 . . . . . . . . . . . . . . . . . . . 20 (((𝐴𝑢) = (𝐴𝑤) ∧ ({𝑢, (𝐴𝑢)} ∈ 𝐸 ∧ {𝑤, (𝐴𝑤)} ∈ 𝐸)) → ({𝑢, (𝐴𝑢)} ∈ 𝐸 ∧ {𝑤, (𝐴𝑢)} ∈ 𝐸))
35 df-ne 2797 . . . . . . . . . . . . . . . . . . . . 21 (𝑢𝑤 ↔ ¬ 𝑢 = 𝑤)
362, 3frgrnbnb 27015 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐺 ∈ FriendGraph ∧ (𝑢𝐷𝑤𝐷) ∧ 𝑢𝑤) → (({𝑢, (𝐴𝑢)} ∈ 𝐸 ∧ {𝑤, (𝐴𝑢)} ∈ 𝐸) → (𝐴𝑢) = 𝑋))
379, 36syl3an1 1356 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ (𝑢𝐷𝑤𝐷) ∧ 𝑢𝑤) → (({𝑢, (𝐴𝑢)} ∈ 𝐸 ∧ {𝑤, (𝐴𝑢)} ∈ 𝐸) → (𝐴𝑢) = 𝑋))
38373expa 1262 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (𝑢𝐷𝑤𝐷)) ∧ 𝑢𝑤) → (({𝑢, (𝐴𝑢)} ∈ 𝐸 ∧ {𝑤, (𝐴𝑢)} ∈ 𝐸) → (𝐴𝑢) = 𝑋))
39 df-nel 2900 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑋𝑁 ↔ ¬ 𝑋𝑁)
40 eleq1 2692 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝐴𝑢) = 𝑋 → ((𝐴𝑢) ∈ 𝑁𝑋𝑁))
4140biimpa 501 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝐴𝑢) = 𝑋 ∧ (𝐴𝑢) ∈ 𝑁) → 𝑋𝑁)
4241pm2.24d 147 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝐴𝑢) = 𝑋 ∧ (𝐴𝑢) ∈ 𝑁) → (¬ 𝑋𝑁𝑢 = 𝑤))
4342expcom 451 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐴𝑢) ∈ 𝑁 → ((𝐴𝑢) = 𝑋 → (¬ 𝑋𝑁𝑢 = 𝑤)))
4443com13 88 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑋𝑁 → ((𝐴𝑢) = 𝑋 → ((𝐴𝑢) ∈ 𝑁𝑢 = 𝑤)))
4539, 44sylbi 207 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑋𝑁 → ((𝐴𝑢) = 𝑋 → ((𝐴𝑢) ∈ 𝑁𝑢 = 𝑤)))
4645com12 32 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐴𝑢) = 𝑋 → (𝑋𝑁 → ((𝐴𝑢) ∈ 𝑁𝑢 = 𝑤)))
4738, 46syl6 35 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑢𝐷𝑤𝐷)) ∧ 𝑢𝑤) → (({𝑢, (𝐴𝑢)} ∈ 𝐸 ∧ {𝑤, (𝐴𝑢)} ∈ 𝐸) → (𝑋𝑁 → ((𝐴𝑢) ∈ 𝑁𝑢 = 𝑤))))
4847expcom 451 . . . . . . . . . . . . . . . . . . . . . 22 (𝑢𝑤 → ((𝜑 ∧ (𝑢𝐷𝑤𝐷)) → (({𝑢, (𝐴𝑢)} ∈ 𝐸 ∧ {𝑤, (𝐴𝑢)} ∈ 𝐸) → (𝑋𝑁 → ((𝐴𝑢) ∈ 𝑁𝑢 = 𝑤)))))
4948com23 86 . . . . . . . . . . . . . . . . . . . . 21 (𝑢𝑤 → (({𝑢, (𝐴𝑢)} ∈ 𝐸 ∧ {𝑤, (𝐴𝑢)} ∈ 𝐸) → ((𝜑 ∧ (𝑢𝐷𝑤𝐷)) → (𝑋𝑁 → ((𝐴𝑢) ∈ 𝑁𝑢 = 𝑤)))))
5035, 49sylbir 225 . . . . . . . . . . . . . . . . . . . 20 𝑢 = 𝑤 → (({𝑢, (𝐴𝑢)} ∈ 𝐸 ∧ {𝑤, (𝐴𝑢)} ∈ 𝐸) → ((𝜑 ∧ (𝑢𝐷𝑤𝐷)) → (𝑋𝑁 → ((𝐴𝑢) ∈ 𝑁𝑢 = 𝑤)))))
5134, 50syl5com 31 . . . . . . . . . . . . . . . . . . 19 (((𝐴𝑢) = (𝐴𝑤) ∧ ({𝑢, (𝐴𝑢)} ∈ 𝐸 ∧ {𝑤, (𝐴𝑤)} ∈ 𝐸)) → (¬ 𝑢 = 𝑤 → ((𝜑 ∧ (𝑢𝐷𝑤𝐷)) → (𝑋𝑁 → ((𝐴𝑢) ∈ 𝑁𝑢 = 𝑤)))))
5251expcom 451 . . . . . . . . . . . . . . . . . 18 (({𝑢, (𝐴𝑢)} ∈ 𝐸 ∧ {𝑤, (𝐴𝑤)} ∈ 𝐸) → ((𝐴𝑢) = (𝐴𝑤) → (¬ 𝑢 = 𝑤 → ((𝜑 ∧ (𝑢𝐷𝑤𝐷)) → (𝑋𝑁 → ((𝐴𝑢) ∈ 𝑁𝑢 = 𝑤))))))
5352com24 95 . . . . . . . . . . . . . . . . 17 (({𝑢, (𝐴𝑢)} ∈ 𝐸 ∧ {𝑤, (𝐴𝑤)} ∈ 𝐸) → ((𝜑 ∧ (𝑢𝐷𝑤𝐷)) → (¬ 𝑢 = 𝑤 → ((𝐴𝑢) = (𝐴𝑤) → (𝑋𝑁 → ((𝐴𝑢) ∈ 𝑁𝑢 = 𝑤))))))
5429, 53mpcom 38 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑢𝐷𝑤𝐷)) → (¬ 𝑢 = 𝑤 → ((𝐴𝑢) = (𝐴𝑤) → (𝑋𝑁 → ((𝐴𝑢) ∈ 𝑁𝑢 = 𝑤)))))
5554ex 450 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑢𝐷𝑤𝐷) → (¬ 𝑢 = 𝑤 → ((𝐴𝑢) = (𝐴𝑤) → (𝑋𝑁 → ((𝐴𝑢) ∈ 𝑁𝑢 = 𝑤))))))
5655com3r 87 . . . . . . . . . . . . . 14 𝑢 = 𝑤 → (𝜑 → ((𝑢𝐷𝑤𝐷) → ((𝐴𝑢) = (𝐴𝑤) → (𝑋𝑁 → ((𝐴𝑢) ∈ 𝑁𝑢 = 𝑤))))))
5756com15 101 . . . . . . . . . . . . 13 (𝑋𝑁 → (𝜑 → ((𝑢𝐷𝑤𝐷) → ((𝐴𝑢) = (𝐴𝑤) → (¬ 𝑢 = 𝑤 → ((𝐴𝑢) ∈ 𝑁𝑢 = 𝑤))))))
5816, 57mpcom 38 . . . . . . . . . . . 12 (𝜑 → ((𝑢𝐷𝑤𝐷) → ((𝐴𝑢) = (𝐴𝑤) → (¬ 𝑢 = 𝑤 → ((𝐴𝑢) ∈ 𝑁𝑢 = 𝑤)))))
5958expd 452 . . . . . . . . . . 11 (𝜑 → (𝑢𝐷 → (𝑤𝐷 → ((𝐴𝑢) = (𝐴𝑤) → (¬ 𝑢 = 𝑤 → ((𝐴𝑢) ∈ 𝑁𝑢 = 𝑤))))))
6059adantr 481 . . . . . . . . . 10 ((𝜑𝐴:𝐷𝑁) → (𝑢𝐷 → (𝑤𝐷 → ((𝐴𝑢) = (𝐴𝑤) → (¬ 𝑢 = 𝑤 → ((𝐴𝑢) ∈ 𝑁𝑢 = 𝑤))))))
6160imp41 618 . . . . . . . . 9 (((((𝜑𝐴:𝐷𝑁) ∧ 𝑢𝐷) ∧ 𝑤𝐷) ∧ (𝐴𝑢) = (𝐴𝑤)) → (¬ 𝑢 = 𝑤 → ((𝐴𝑢) ∈ 𝑁𝑢 = 𝑤)))
6215, 61mpid 44 . . . . . . . 8 (((((𝜑𝐴:𝐷𝑁) ∧ 𝑢𝐷) ∧ 𝑤𝐷) ∧ (𝐴𝑢) = (𝐴𝑤)) → (¬ 𝑢 = 𝑤𝑢 = 𝑤))
6362pm2.18d 124 . . . . . . 7 (((((𝜑𝐴:𝐷𝑁) ∧ 𝑢𝐷) ∧ 𝑤𝐷) ∧ (𝐴𝑢) = (𝐴𝑤)) → 𝑢 = 𝑤)
6463ex 450 . . . . . 6 ((((𝜑𝐴:𝐷𝑁) ∧ 𝑢𝐷) ∧ 𝑤𝐷) → ((𝐴𝑢) = (𝐴𝑤) → 𝑢 = 𝑤))
6564ralrimiva 2965 . . . . 5 (((𝜑𝐴:𝐷𝑁) ∧ 𝑢𝐷) → ∀𝑤𝐷 ((𝐴𝑢) = (𝐴𝑤) → 𝑢 = 𝑤))
6665ralrimiva 2965 . . . 4 ((𝜑𝐴:𝐷𝑁) → ∀𝑢𝐷𝑤𝐷 ((𝐴𝑢) = (𝐴𝑤) → 𝑢 = 𝑤))
67 dff13 6467 . . . 4 (𝐴:𝐷1-1→ran 𝐴 ↔ (𝐴:𝐷⟶ran 𝐴 ∧ ∀𝑢𝐷𝑤𝐷 ((𝐴𝑢) = (𝐴𝑤) → 𝑢 = 𝑤)))
6813, 66, 67sylanbrc 697 . . 3 ((𝜑𝐴:𝐷𝑁) → 𝐴:𝐷1-1→ran 𝐴)
6968expcom 451 . 2 (𝐴:𝐷𝑁 → (𝜑𝐴:𝐷1-1→ran 𝐴))
7011, 69mpcom 38 1 (𝜑𝐴:𝐷1-1→ran 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384   = wceq 1480  wcel 1992  wne 2796  wnel 2899  wral 2912  {cpr 4155  cmpt 4678  ran crn 5080  wf 5846  1-1wf1 5847  cfv 5850  crio 6565  (class class class)co 6605  Vtxcvtx 25769  Edgcedg 25834   NeighbVtx cnbgr 26105   FriendGraph cfrgr 26980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903  ax-cnex 9937  ax-resscn 9938  ax-1cn 9939  ax-icn 9940  ax-addcl 9941  ax-addrcl 9942  ax-mulcl 9943  ax-mulrcl 9944  ax-mulcom 9945  ax-addass 9946  ax-mulass 9947  ax-distr 9948  ax-i2m1 9949  ax-1ne0 9950  ax-1rid 9951  ax-rnegex 9952  ax-rrecex 9953  ax-cnre 9954  ax-pre-lttri 9955  ax-pre-lttrn 9956  ax-pre-ltadd 9957  ax-pre-mulgt0 9958
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-nel 2900  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3193  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5642  df-ord 5688  df-on 5689  df-lim 5690  df-suc 5691  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-f1 5855  df-fo 5856  df-f1o 5857  df-fv 5858  df-riota 6566  df-ov 6608  df-oprab 6609  df-mpt2 6610  df-om 7014  df-1st 7116  df-2nd 7117  df-wrecs 7353  df-recs 7414  df-rdg 7452  df-1o 7506  df-2o 7507  df-oadd 7510  df-er 7688  df-en 7901  df-dom 7902  df-sdom 7903  df-fin 7904  df-card 8710  df-cda 8935  df-pnf 10021  df-mnf 10022  df-xr 10023  df-ltxr 10024  df-le 10025  df-sub 10213  df-neg 10214  df-nn 10966  df-2 11024  df-n0 11238  df-z 11323  df-uz 11632  df-fz 12266  df-hash 13055  df-edg 25835  df-upgr 25868  df-umgr 25869  df-usgr 25934  df-nbgr 26109  df-frgr 26981
This theorem is referenced by:  frgrncvvdeqlem8  27031
  Copyright terms: Public domain W3C validator