MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgrregord013 Structured version   Visualization version   GIF version

Theorem frgrregord013 28101
Description: If a finite friendship graph is 𝐾-regular, then it must have order 0, 1 or 3. (Contributed by Alexander van der Vekens, 9-Oct-2018.) (Revised by AV, 4-Jun-2021.)
Hypothesis
Ref Expression
frgrreggt1.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
frgrregord013 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))

Proof of Theorem frgrregord013
Dummy variables 𝑣 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hashcl 13705 . . 3 (𝑉 ∈ Fin → (♯‘𝑉) ∈ ℕ0)
2 ax-1 6 . . . . 5 (((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3) → ((((♯‘𝑉) ∈ ℕ0𝑉 ∈ Fin ∧ 𝐺 ∈ FriendGraph ) ∧ 𝐺 RegUSGraph 𝐾) → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3)))
3 3ioran 1098 . . . . . 6 (¬ ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3) ↔ (¬ (♯‘𝑉) = 0 ∧ ¬ (♯‘𝑉) = 1 ∧ ¬ (♯‘𝑉) = 3))
4 df-ne 3014 . . . . . . . . . . . . 13 ((♯‘𝑉) ≠ 0 ↔ ¬ (♯‘𝑉) = 0)
5 hasheq0 13712 . . . . . . . . . . . . . . . . . 18 (𝑉 ∈ Fin → ((♯‘𝑉) = 0 ↔ 𝑉 = ∅))
65necon3bid 3057 . . . . . . . . . . . . . . . . 17 (𝑉 ∈ Fin → ((♯‘𝑉) ≠ 0 ↔ 𝑉 ≠ ∅))
76biimpa 477 . . . . . . . . . . . . . . . 16 ((𝑉 ∈ Fin ∧ (♯‘𝑉) ≠ 0) → 𝑉 ≠ ∅)
8 elnnne0 11899 . . . . . . . . . . . . . . . . . . . 20 ((♯‘𝑉) ∈ ℕ ↔ ((♯‘𝑉) ∈ ℕ0 ∧ (♯‘𝑉) ≠ 0))
9 df-ne 3014 . . . . . . . . . . . . . . . . . . . . . 22 ((♯‘𝑉) ≠ 1 ↔ ¬ (♯‘𝑉) = 1)
10 eluz2b3 12310 . . . . . . . . . . . . . . . . . . . . . . . 24 ((♯‘𝑉) ∈ (ℤ‘2) ↔ ((♯‘𝑉) ∈ ℕ ∧ (♯‘𝑉) ≠ 1))
11 hash2prde 13816 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑉 ∈ Fin ∧ (♯‘𝑉) = 2) → ∃𝑎𝑏(𝑎𝑏𝑉 = {𝑎, 𝑏}))
12 vex 3495 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 𝑎 ∈ V
1312a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑎𝑏𝑎 ∈ V)
14 vex 3495 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 𝑏 ∈ V
1514a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑎𝑏𝑏 ∈ V)
16 id 22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑎𝑏𝑎𝑏)
1713, 15, 163jca 1120 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑎𝑏 → (𝑎 ∈ V ∧ 𝑏 ∈ V ∧ 𝑎𝑏))
18 frgrreggt1.v . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 𝑉 = (Vtx‘𝐺)
1918eqeq1i 2823 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑉 = {𝑎, 𝑏} ↔ (Vtx‘𝐺) = {𝑎, 𝑏})
2019biimpi 217 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑉 = {𝑎, 𝑏} → (Vtx‘𝐺) = {𝑎, 𝑏})
21 nfrgr2v 27978 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (((𝑎 ∈ V ∧ 𝑏 ∈ V ∧ 𝑎𝑏) ∧ (Vtx‘𝐺) = {𝑎, 𝑏}) → 𝐺 ∉ FriendGraph )
2217, 20, 21syl2an 595 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑎𝑏𝑉 = {𝑎, 𝑏}) → 𝐺 ∉ FriendGraph )
23 df-nel 3121 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝐺 ∉ FriendGraph ↔ ¬ 𝐺 ∈ FriendGraph )
2422, 23sylib 219 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑎𝑏𝑉 = {𝑎, 𝑏}) → ¬ 𝐺 ∈ FriendGraph )
2524pm2.21d 121 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑎𝑏𝑉 = {𝑎, 𝑏}) → (𝐺 ∈ FriendGraph → (𝑉 ≠ ∅ → (¬ (♯‘𝑉) = 3 → (𝐺 RegUSGraph 𝐾 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))))))
2625com23 86 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑎𝑏𝑉 = {𝑎, 𝑏}) → (𝑉 ≠ ∅ → (𝐺 ∈ FriendGraph → (¬ (♯‘𝑉) = 3 → (𝐺 RegUSGraph 𝐾 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))))))
2726exlimivv 1924 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (∃𝑎𝑏(𝑎𝑏𝑉 = {𝑎, 𝑏}) → (𝑉 ≠ ∅ → (𝐺 ∈ FriendGraph → (¬ (♯‘𝑉) = 3 → (𝐺 RegUSGraph 𝐾 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))))))
2811, 27syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑉 ∈ Fin ∧ (♯‘𝑉) = 2) → (𝑉 ≠ ∅ → (𝐺 ∈ FriendGraph → (¬ (♯‘𝑉) = 3 → (𝐺 RegUSGraph 𝐾 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))))))
2928ex 413 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑉 ∈ Fin → ((♯‘𝑉) = 2 → (𝑉 ≠ ∅ → (𝐺 ∈ FriendGraph → (¬ (♯‘𝑉) = 3 → (𝐺 RegUSGraph 𝐾 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3)))))))
3029com23 86 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑉 ∈ Fin → (𝑉 ≠ ∅ → ((♯‘𝑉) = 2 → (𝐺 ∈ FriendGraph → (¬ (♯‘𝑉) = 3 → (𝐺 RegUSGraph 𝐾 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3)))))))
3130com14 96 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝐺 ∈ FriendGraph → (𝑉 ≠ ∅ → ((♯‘𝑉) = 2 → (𝑉 ∈ Fin → (¬ (♯‘𝑉) = 3 → (𝐺 RegUSGraph 𝐾 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3)))))))
3231a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((♯‘𝑉) ∈ (ℤ‘2) → (𝐺 ∈ FriendGraph → (𝑉 ≠ ∅ → ((♯‘𝑉) = 2 → (𝑉 ∈ Fin → (¬ (♯‘𝑉) = 3 → (𝐺 RegUSGraph 𝐾 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))))))))
33323imp 1103 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((♯‘𝑉) ∈ (ℤ‘2) ∧ 𝐺 ∈ FriendGraph ∧ 𝑉 ≠ ∅) → ((♯‘𝑉) = 2 → (𝑉 ∈ Fin → (¬ (♯‘𝑉) = 3 → (𝐺 RegUSGraph 𝐾 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))))))
3433com12 32 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((♯‘𝑉) = 2 → (((♯‘𝑉) ∈ (ℤ‘2) ∧ 𝐺 ∈ FriendGraph ∧ 𝑉 ≠ ∅) → (𝑉 ∈ Fin → (¬ (♯‘𝑉) = 3 → (𝐺 RegUSGraph 𝐾 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))))))
35 eqid 2818 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (VtxDeg‘𝐺) = (VtxDeg‘𝐺)
3618, 35rusgrprop0 27276 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (𝐺 RegUSGraph 𝐾 → (𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾))
37 eluz2gt1 12308 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 ((♯‘𝑉) ∈ (ℤ‘2) → 1 < (♯‘𝑉))
3837anim1ci 615 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 (((♯‘𝑉) ∈ (ℤ‘2) ∧ 𝐺 ∈ FriendGraph ) → (𝐺 ∈ FriendGraph ∧ 1 < (♯‘𝑉)))
3918vdgn0frgrv2 28001 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 ((𝐺 ∈ FriendGraph ∧ 𝑣𝑉) → (1 < (♯‘𝑉) → ((VtxDeg‘𝐺)‘𝑣) ≠ 0))
4039impancom 452 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 ((𝐺 ∈ FriendGraph ∧ 1 < (♯‘𝑉)) → (𝑣𝑉 → ((VtxDeg‘𝐺)‘𝑣) ≠ 0))
4140ralrimiv 3178 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 ((𝐺 ∈ FriendGraph ∧ 1 < (♯‘𝑉)) → ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) ≠ 0)
42 eqeq2 2830 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 (𝐾 = 0 → (((VtxDeg‘𝐺)‘𝑣) = 𝐾 ↔ ((VtxDeg‘𝐺)‘𝑣) = 0))
4342ralbidv 3194 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 (𝐾 = 0 → (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾 ↔ ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 0))
44 r19.26 3167 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 (∀𝑣𝑉 (((VtxDeg‘𝐺)‘𝑣) = 0 ∧ ((VtxDeg‘𝐺)‘𝑣) ≠ 0) ↔ (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 0 ∧ ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) ≠ 0))
45 nne 3017 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 (¬ ((VtxDeg‘𝐺)‘𝑣) ≠ 0 ↔ ((VtxDeg‘𝐺)‘𝑣) = 0)
4645bicomi 225 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 (((VtxDeg‘𝐺)‘𝑣) = 0 ↔ ¬ ((VtxDeg‘𝐺)‘𝑣) ≠ 0)
4746anbi1i 623 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 ((((VtxDeg‘𝐺)‘𝑣) = 0 ∧ ((VtxDeg‘𝐺)‘𝑣) ≠ 0) ↔ (¬ ((VtxDeg‘𝐺)‘𝑣) ≠ 0 ∧ ((VtxDeg‘𝐺)‘𝑣) ≠ 0))
48 ancom 461 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 ((¬ ((VtxDeg‘𝐺)‘𝑣) ≠ 0 ∧ ((VtxDeg‘𝐺)‘𝑣) ≠ 0) ↔ (((VtxDeg‘𝐺)‘𝑣) ≠ 0 ∧ ¬ ((VtxDeg‘𝐺)‘𝑣) ≠ 0))
49 pm3.24 403 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 ¬ (((VtxDeg‘𝐺)‘𝑣) ≠ 0 ∧ ¬ ((VtxDeg‘𝐺)‘𝑣) ≠ 0)
5049bifal 1544 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 ((((VtxDeg‘𝐺)‘𝑣) ≠ 0 ∧ ¬ ((VtxDeg‘𝐺)‘𝑣) ≠ 0) ↔ ⊥)
5147, 48, 503bitri 298 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 ((((VtxDeg‘𝐺)‘𝑣) = 0 ∧ ((VtxDeg‘𝐺)‘𝑣) ≠ 0) ↔ ⊥)
5251ralbii 3162 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 (∀𝑣𝑉 (((VtxDeg‘𝐺)‘𝑣) = 0 ∧ ((VtxDeg‘𝐺)‘𝑣) ≠ 0) ↔ ∀𝑣𝑉 ⊥)
53 r19.3rzv 4440 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 (𝑉 ≠ ∅ → (⊥ ↔ ∀𝑣𝑉 ⊥))
54 falim 1545 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 (⊥ → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))
5553, 54syl6bir 255 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 (𝑉 ≠ ∅ → (∀𝑣𝑉 ⊥ → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3)))
5655adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (∀𝑣𝑉 ⊥ → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3)))
5756com12 32 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 (∀𝑣𝑉 ⊥ → ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3)))
5852, 57sylbi 218 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 (∀𝑣𝑉 (((VtxDeg‘𝐺)‘𝑣) = 0 ∧ ((VtxDeg‘𝐺)‘𝑣) ≠ 0) → ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3)))
5944, 58sylbir 236 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 ((∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 0 ∧ ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) ≠ 0) → ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3)))
6059ex 413 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 0 → (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) ≠ 0 → ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))))
6143, 60syl6bi 254 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 (𝐾 = 0 → (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾 → (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) ≠ 0 → ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3)))))
6261com4t 93 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) ≠ 0 → ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (𝐾 = 0 → (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3)))))
6338, 41, 623syl 18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 (((♯‘𝑉) ∈ (ℤ‘2) ∧ 𝐺 ∈ FriendGraph ) → ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (𝐾 = 0 → (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3)))))
6463ex 413 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 ((♯‘𝑉) ∈ (ℤ‘2) → (𝐺 ∈ FriendGraph → ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (𝐾 = 0 → (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))))))
6564com25 99 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ((♯‘𝑉) ∈ (ℤ‘2) → (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾 → ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (𝐾 = 0 → (𝐺 ∈ FriendGraph → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))))))
6665adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (((¬ (♯‘𝑉) = 3 ∧ ¬ (♯‘𝑉) = 2) ∧ (♯‘𝑉) ∈ (ℤ‘2)) → (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾 → ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (𝐾 = 0 → (𝐺 ∈ FriendGraph → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))))))
6766com15 101 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (𝐺 ∈ FriendGraph → (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾 → ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (𝐾 = 0 → (((¬ (♯‘𝑉) = 3 ∧ ¬ (♯‘𝑉) = 2) ∧ (♯‘𝑉) ∈ (ℤ‘2)) → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))))))
6867com12 32 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾 → (𝐺 ∈ FriendGraph → ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (𝐾 = 0 → (((¬ (♯‘𝑉) = 3 ∧ ¬ (♯‘𝑉) = 2) ∧ (♯‘𝑉) ∈ (ℤ‘2)) → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))))))
69683ad2ant3 1127 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾) → (𝐺 ∈ FriendGraph → ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (𝐾 = 0 → (((¬ (♯‘𝑉) = 3 ∧ ¬ (♯‘𝑉) = 2) ∧ (♯‘𝑉) ∈ (ℤ‘2)) → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))))))
7036, 69syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝐺 RegUSGraph 𝐾 → (𝐺 ∈ FriendGraph → ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (𝐾 = 0 → (((¬ (♯‘𝑉) = 3 ∧ ¬ (♯‘𝑉) = 2) ∧ (♯‘𝑉) ∈ (ℤ‘2)) → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))))))
7170impcom 408 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾) → ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (𝐾 = 0 → (((¬ (♯‘𝑉) = 3 ∧ ¬ (♯‘𝑉) = 2) ∧ (♯‘𝑉) ∈ (ℤ‘2)) → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3)))))
7271impcom 408 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ (𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾)) → (𝐾 = 0 → (((¬ (♯‘𝑉) = 3 ∧ ¬ (♯‘𝑉) = 2) ∧ (♯‘𝑉) ∈ (ℤ‘2)) → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))))
7318frrusgrord 28047 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → ((𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾) → (♯‘𝑉) = ((𝐾 · (𝐾 − 1)) + 1)))
7473imp 407 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ (𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾)) → (♯‘𝑉) = ((𝐾 · (𝐾 − 1)) + 1))
75 id 22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (𝐾 = 2 → 𝐾 = 2)
76 oveq1 7152 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (𝐾 = 2 → (𝐾 − 1) = (2 − 1))
7775, 76oveq12d 7163 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (𝐾 = 2 → (𝐾 · (𝐾 − 1)) = (2 · (2 − 1)))
7877oveq1d 7160 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (𝐾 = 2 → ((𝐾 · (𝐾 − 1)) + 1) = ((2 · (2 − 1)) + 1))
79 2m1e1 11751 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 (2 − 1) = 1
8079oveq2i 7156 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 (2 · (2 − 1)) = (2 · 1)
81 2t1e2 11788 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 (2 · 1) = 2
8280, 81eqtri 2841 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (2 · (2 − 1)) = 2
8382oveq1i 7155 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((2 · (2 − 1)) + 1) = (2 + 1)
84 2p1e3 11767 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (2 + 1) = 3
8583, 84eqtri 2841 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((2 · (2 − 1)) + 1) = 3
8678, 85syl6eq 2869 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (𝐾 = 2 → ((𝐾 · (𝐾 − 1)) + 1) = 3)
8786eqeq2d 2829 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝐾 = 2 → ((♯‘𝑉) = ((𝐾 · (𝐾 − 1)) + 1) ↔ (♯‘𝑉) = 3))
88 pm2.21 123 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (¬ (♯‘𝑉) = 3 → ((♯‘𝑉) = 3 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3)))
8988ad2antrr 722 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (((¬ (♯‘𝑉) = 3 ∧ ¬ (♯‘𝑉) = 2) ∧ (♯‘𝑉) ∈ (ℤ‘2)) → ((♯‘𝑉) = 3 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3)))
9089com12 32 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((♯‘𝑉) = 3 → (((¬ (♯‘𝑉) = 3 ∧ ¬ (♯‘𝑉) = 2) ∧ (♯‘𝑉) ∈ (ℤ‘2)) → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3)))
9187, 90syl6bi 254 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝐾 = 2 → ((♯‘𝑉) = ((𝐾 · (𝐾 − 1)) + 1) → (((¬ (♯‘𝑉) = 3 ∧ ¬ (♯‘𝑉) = 2) ∧ (♯‘𝑉) ∈ (ℤ‘2)) → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))))
9274, 91syl5com 31 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ (𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾)) → (𝐾 = 2 → (((¬ (♯‘𝑉) = 3 ∧ ¬ (♯‘𝑉) = 2) ∧ (♯‘𝑉) ∈ (ℤ‘2)) → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))))
9318frgrreg 28100 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → ((𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾) → (𝐾 = 0 ∨ 𝐾 = 2)))
9493imp 407 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ (𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾)) → (𝐾 = 0 ∨ 𝐾 = 2))
9572, 92, 94mpjaod 854 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ (𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾)) → (((¬ (♯‘𝑉) = 3 ∧ ¬ (♯‘𝑉) = 2) ∧ (♯‘𝑉) ∈ (ℤ‘2)) → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3)))
9695exp32 421 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (𝐺 ∈ FriendGraph → (𝐺 RegUSGraph 𝐾 → (((¬ (♯‘𝑉) = 3 ∧ ¬ (♯‘𝑉) = 2) ∧ (♯‘𝑉) ∈ (ℤ‘2)) → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3)))))
9796com34 91 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (𝐺 ∈ FriendGraph → (((¬ (♯‘𝑉) = 3 ∧ ¬ (♯‘𝑉) = 2) ∧ (♯‘𝑉) ∈ (ℤ‘2)) → (𝐺 RegUSGraph 𝐾 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3)))))
9897com23 86 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (((¬ (♯‘𝑉) = 3 ∧ ¬ (♯‘𝑉) = 2) ∧ (♯‘𝑉) ∈ (ℤ‘2)) → (𝐺 ∈ FriendGraph → (𝐺 RegUSGraph 𝐾 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3)))))
9998exp4c 433 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (¬ (♯‘𝑉) = 3 → (¬ (♯‘𝑉) = 2 → ((♯‘𝑉) ∈ (ℤ‘2) → (𝐺 ∈ FriendGraph → (𝐺 RegUSGraph 𝐾 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3)))))))
10099com34 91 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (¬ (♯‘𝑉) = 3 → ((♯‘𝑉) ∈ (ℤ‘2) → (¬ (♯‘𝑉) = 2 → (𝐺 ∈ FriendGraph → (𝐺 RegUSGraph 𝐾 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3)))))))
101100com25 99 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (𝐺 ∈ FriendGraph → ((♯‘𝑉) ∈ (ℤ‘2) → (¬ (♯‘𝑉) = 2 → (¬ (♯‘𝑉) = 3 → (𝐺 RegUSGraph 𝐾 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3)))))))
102101ex 413 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑉 ∈ Fin → (𝑉 ≠ ∅ → (𝐺 ∈ FriendGraph → ((♯‘𝑉) ∈ (ℤ‘2) → (¬ (♯‘𝑉) = 2 → (¬ (♯‘𝑉) = 3 → (𝐺 RegUSGraph 𝐾 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))))))))
103102com23 86 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑉 ∈ Fin → (𝐺 ∈ FriendGraph → (𝑉 ≠ ∅ → ((♯‘𝑉) ∈ (ℤ‘2) → (¬ (♯‘𝑉) = 2 → (¬ (♯‘𝑉) = 3 → (𝐺 RegUSGraph 𝐾 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))))))))
104103com14 96 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((♯‘𝑉) ∈ (ℤ‘2) → (𝐺 ∈ FriendGraph → (𝑉 ≠ ∅ → (𝑉 ∈ Fin → (¬ (♯‘𝑉) = 2 → (¬ (♯‘𝑉) = 3 → (𝐺 RegUSGraph 𝐾 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))))))))
1051043imp 1103 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((♯‘𝑉) ∈ (ℤ‘2) ∧ 𝐺 ∈ FriendGraph ∧ 𝑉 ≠ ∅) → (𝑉 ∈ Fin → (¬ (♯‘𝑉) = 2 → (¬ (♯‘𝑉) = 3 → (𝐺 RegUSGraph 𝐾 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))))))
106105com3r 87 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (¬ (♯‘𝑉) = 2 → (((♯‘𝑉) ∈ (ℤ‘2) ∧ 𝐺 ∈ FriendGraph ∧ 𝑉 ≠ ∅) → (𝑉 ∈ Fin → (¬ (♯‘𝑉) = 3 → (𝐺 RegUSGraph 𝐾 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))))))
10734, 106pm2.61i 183 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((♯‘𝑉) ∈ (ℤ‘2) ∧ 𝐺 ∈ FriendGraph ∧ 𝑉 ≠ ∅) → (𝑉 ∈ Fin → (¬ (♯‘𝑉) = 3 → (𝐺 RegUSGraph 𝐾 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3)))))
1081073exp 1111 . . . . . . . . . . . . . . . . . . . . . . . 24 ((♯‘𝑉) ∈ (ℤ‘2) → (𝐺 ∈ FriendGraph → (𝑉 ≠ ∅ → (𝑉 ∈ Fin → (¬ (♯‘𝑉) = 3 → (𝐺 RegUSGraph 𝐾 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3)))))))
10910, 108sylbir 236 . . . . . . . . . . . . . . . . . . . . . . 23 (((♯‘𝑉) ∈ ℕ ∧ (♯‘𝑉) ≠ 1) → (𝐺 ∈ FriendGraph → (𝑉 ≠ ∅ → (𝑉 ∈ Fin → (¬ (♯‘𝑉) = 3 → (𝐺 RegUSGraph 𝐾 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3)))))))
110109ex 413 . . . . . . . . . . . . . . . . . . . . . 22 ((♯‘𝑉) ∈ ℕ → ((♯‘𝑉) ≠ 1 → (𝐺 ∈ FriendGraph → (𝑉 ≠ ∅ → (𝑉 ∈ Fin → (¬ (♯‘𝑉) = 3 → (𝐺 RegUSGraph 𝐾 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))))))))
1119, 110syl5bir 244 . . . . . . . . . . . . . . . . . . . . 21 ((♯‘𝑉) ∈ ℕ → (¬ (♯‘𝑉) = 1 → (𝐺 ∈ FriendGraph → (𝑉 ≠ ∅ → (𝑉 ∈ Fin → (¬ (♯‘𝑉) = 3 → (𝐺 RegUSGraph 𝐾 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))))))))
112111com25 99 . . . . . . . . . . . . . . . . . . . 20 ((♯‘𝑉) ∈ ℕ → (𝑉 ∈ Fin → (𝐺 ∈ FriendGraph → (𝑉 ≠ ∅ → (¬ (♯‘𝑉) = 1 → (¬ (♯‘𝑉) = 3 → (𝐺 RegUSGraph 𝐾 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))))))))
1138, 112sylbir 236 . . . . . . . . . . . . . . . . . . 19 (((♯‘𝑉) ∈ ℕ0 ∧ (♯‘𝑉) ≠ 0) → (𝑉 ∈ Fin → (𝐺 ∈ FriendGraph → (𝑉 ≠ ∅ → (¬ (♯‘𝑉) = 1 → (¬ (♯‘𝑉) = 3 → (𝐺 RegUSGraph 𝐾 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))))))))
114113ex 413 . . . . . . . . . . . . . . . . . 18 ((♯‘𝑉) ∈ ℕ0 → ((♯‘𝑉) ≠ 0 → (𝑉 ∈ Fin → (𝐺 ∈ FriendGraph → (𝑉 ≠ ∅ → (¬ (♯‘𝑉) = 1 → (¬ (♯‘𝑉) = 3 → (𝐺 RegUSGraph 𝐾 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3)))))))))
115114impcomd 412 . . . . . . . . . . . . . . . . 17 ((♯‘𝑉) ∈ ℕ0 → ((𝑉 ∈ Fin ∧ (♯‘𝑉) ≠ 0) → (𝐺 ∈ FriendGraph → (𝑉 ≠ ∅ → (¬ (♯‘𝑉) = 1 → (¬ (♯‘𝑉) = 3 → (𝐺 RegUSGraph 𝐾 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))))))))
116115com14 96 . . . . . . . . . . . . . . . 16 (𝑉 ≠ ∅ → ((𝑉 ∈ Fin ∧ (♯‘𝑉) ≠ 0) → (𝐺 ∈ FriendGraph → ((♯‘𝑉) ∈ ℕ0 → (¬ (♯‘𝑉) = 1 → (¬ (♯‘𝑉) = 3 → (𝐺 RegUSGraph 𝐾 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))))))))
1177, 116mpcom 38 . . . . . . . . . . . . . . 15 ((𝑉 ∈ Fin ∧ (♯‘𝑉) ≠ 0) → (𝐺 ∈ FriendGraph → ((♯‘𝑉) ∈ ℕ0 → (¬ (♯‘𝑉) = 1 → (¬ (♯‘𝑉) = 3 → (𝐺 RegUSGraph 𝐾 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3)))))))
118117ex 413 . . . . . . . . . . . . . 14 (𝑉 ∈ Fin → ((♯‘𝑉) ≠ 0 → (𝐺 ∈ FriendGraph → ((♯‘𝑉) ∈ ℕ0 → (¬ (♯‘𝑉) = 1 → (¬ (♯‘𝑉) = 3 → (𝐺 RegUSGraph 𝐾 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))))))))
119118com14 96 . . . . . . . . . . . . 13 ((♯‘𝑉) ∈ ℕ0 → ((♯‘𝑉) ≠ 0 → (𝐺 ∈ FriendGraph → (𝑉 ∈ Fin → (¬ (♯‘𝑉) = 1 → (¬ (♯‘𝑉) = 3 → (𝐺 RegUSGraph 𝐾 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))))))))
1204, 119syl5bir 244 . . . . . . . . . . . 12 ((♯‘𝑉) ∈ ℕ0 → (¬ (♯‘𝑉) = 0 → (𝐺 ∈ FriendGraph → (𝑉 ∈ Fin → (¬ (♯‘𝑉) = 1 → (¬ (♯‘𝑉) = 3 → (𝐺 RegUSGraph 𝐾 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))))))))
121120com24 95 . . . . . . . . . . 11 ((♯‘𝑉) ∈ ℕ0 → (𝑉 ∈ Fin → (𝐺 ∈ FriendGraph → (¬ (♯‘𝑉) = 0 → (¬ (♯‘𝑉) = 1 → (¬ (♯‘𝑉) = 3 → (𝐺 RegUSGraph 𝐾 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))))))))
1221213imp 1103 . . . . . . . . . 10 (((♯‘𝑉) ∈ ℕ0𝑉 ∈ Fin ∧ 𝐺 ∈ FriendGraph ) → (¬ (♯‘𝑉) = 0 → (¬ (♯‘𝑉) = 1 → (¬ (♯‘𝑉) = 3 → (𝐺 RegUSGraph 𝐾 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))))))
123122com25 99 . . . . . . . . 9 (((♯‘𝑉) ∈ ℕ0𝑉 ∈ Fin ∧ 𝐺 ∈ FriendGraph ) → (𝐺 RegUSGraph 𝐾 → (¬ (♯‘𝑉) = 1 → (¬ (♯‘𝑉) = 3 → (¬ (♯‘𝑉) = 0 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))))))
124123imp 407 . . . . . . . 8 ((((♯‘𝑉) ∈ ℕ0𝑉 ∈ Fin ∧ 𝐺 ∈ FriendGraph ) ∧ 𝐺 RegUSGraph 𝐾) → (¬ (♯‘𝑉) = 1 → (¬ (♯‘𝑉) = 3 → (¬ (♯‘𝑉) = 0 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3)))))
125124com14 96 . . . . . . 7 (¬ (♯‘𝑉) = 0 → (¬ (♯‘𝑉) = 1 → (¬ (♯‘𝑉) = 3 → ((((♯‘𝑉) ∈ ℕ0𝑉 ∈ Fin ∧ 𝐺 ∈ FriendGraph ) ∧ 𝐺 RegUSGraph 𝐾) → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3)))))
1261253imp 1103 . . . . . 6 ((¬ (♯‘𝑉) = 0 ∧ ¬ (♯‘𝑉) = 1 ∧ ¬ (♯‘𝑉) = 3) → ((((♯‘𝑉) ∈ ℕ0𝑉 ∈ Fin ∧ 𝐺 ∈ FriendGraph ) ∧ 𝐺 RegUSGraph 𝐾) → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3)))
1273, 126sylbi 218 . . . . 5 (¬ ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3) → ((((♯‘𝑉) ∈ ℕ0𝑉 ∈ Fin ∧ 𝐺 ∈ FriendGraph ) ∧ 𝐺 RegUSGraph 𝐾) → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3)))
1282, 127pm2.61i 183 . . . 4 ((((♯‘𝑉) ∈ ℕ0𝑉 ∈ Fin ∧ 𝐺 ∈ FriendGraph ) ∧ 𝐺 RegUSGraph 𝐾) → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))
1291283exp1 1344 . . 3 ((♯‘𝑉) ∈ ℕ0 → (𝑉 ∈ Fin → (𝐺 ∈ FriendGraph → (𝐺 RegUSGraph 𝐾 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3)))))
1301, 129mpcom 38 . 2 (𝑉 ∈ Fin → (𝐺 ∈ FriendGraph → (𝐺 RegUSGraph 𝐾 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))))
1311303imp21 1106 1 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  wo 841  w3o 1078  w3a 1079   = wceq 1528  wfal 1540  wex 1771  wcel 2105  wne 3013  wnel 3120  wral 3135  Vcvv 3492  c0 4288  {cpr 4559   class class class wbr 5057  cfv 6348  (class class class)co 7145  Fincfn 8497  0cc0 10525  1c1 10526   + caddc 10528   · cmul 10530   < clt 10663  cmin 10858  cn 11626  2c2 11680  3c3 11681  0cn0 11885  0*cxnn0 11955  cuz 12231  chash 13678  Vtxcvtx 26708  USGraphcusgr 26861  VtxDegcvtxdg 27174   RegUSGraph crusgr 27265   FriendGraph cfrgr 27964
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-inf2 9092  ax-ac2 9873  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602  ax-pre-sup 10603
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-ifp 1055  df-3or 1080  df-3an 1081  df-tru 1531  df-fal 1541  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-disj 5023  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-2o 8092  df-oadd 8095  df-er 8278  df-ec 8280  df-qs 8284  df-map 8397  df-pm 8398  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-sup 8894  df-inf 8895  df-oi 8962  df-dju 9318  df-card 9356  df-ac 9530  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-div 11286  df-nn 11627  df-2 11688  df-3 11689  df-n0 11886  df-xnn0 11956  df-z 11970  df-uz 12232  df-rp 12378  df-xadd 12496  df-ico 12732  df-fz 12881  df-fzo 13022  df-fl 13150  df-mod 13226  df-seq 13358  df-exp 13418  df-hash 13679  df-word 13850  df-lsw 13903  df-concat 13911  df-s1 13938  df-substr 13991  df-pfx 14021  df-reps 14119  df-csh 14139  df-s2 14198  df-s3 14199  df-cj 14446  df-re 14447  df-im 14448  df-sqrt 14582  df-abs 14583  df-clim 14833  df-sum 15031  df-dvds 15596  df-gcd 15832  df-prm 16004  df-phi 16091  df-vtx 26710  df-iedg 26711  df-edg 26760  df-uhgr 26770  df-ushgr 26771  df-upgr 26794  df-umgr 26795  df-uspgr 26862  df-usgr 26863  df-fusgr 27026  df-nbgr 27042  df-vtxdg 27175  df-rgr 27266  df-rusgr 27267  df-wlks 27308  df-wlkson 27309  df-trls 27401  df-trlson 27402  df-pths 27424  df-spths 27425  df-pthson 27426  df-spthson 27427  df-wwlks 27535  df-wwlksn 27536  df-wwlksnon 27537  df-wspthsn 27538  df-wspthsnon 27539  df-clwwlk 27687  df-clwwlkn 27730  df-clwwlknon 27794  df-conngr 27893  df-frgr 27965
This theorem is referenced by:  frgrregord13  28102
  Copyright terms: Public domain W3C validator