MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgrwopregasn Structured version   Visualization version   GIF version

Theorem frgrwopregasn 28087
Description: According to statement 5 in [Huneke] p. 2: "If A ... is a singleton, then that singleton is a universal friend". This version of frgrwopreg1 28089 is stricter (claiming that the singleton itself is a universal friend instead of claiming the existence of a universal friend only) and therefore closer to Huneke's statement. This strict variant, however, is not required for the proof of the friendship theorem. (Contributed by Alexander van der Vekens, 1-Jan-2018.) (Revised by AV, 4-Feb-2022.)
Hypotheses
Ref Expression
frgrwopreg.v 𝑉 = (Vtx‘𝐺)
frgrwopreg.d 𝐷 = (VtxDeg‘𝐺)
frgrwopreg.a 𝐴 = {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾}
frgrwopreg.b 𝐵 = (𝑉𝐴)
frgrwopreg.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
frgrwopregasn ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝐴 = {𝑋}) → ∀𝑤 ∈ (𝑉 ∖ {𝑋}){𝑋, 𝑤} ∈ 𝐸)
Distinct variable groups:   𝑥,𝑉   𝑥,𝐴   𝑥,𝐺   𝑥,𝐾   𝑥,𝐷   𝑥,𝑋   𝑥,𝐵   𝑤,𝐴   𝑤,𝐵   𝑤,𝐺,𝑥   𝑤,𝑉   𝑤,𝑋
Allowed substitution hints:   𝐷(𝑤)   𝐸(𝑥,𝑤)   𝐾(𝑤)

Proof of Theorem frgrwopregasn
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 frgrwopreg.v . . . 4 𝑉 = (Vtx‘𝐺)
2 frgrwopreg.d . . . 4 𝐷 = (VtxDeg‘𝐺)
3 frgrwopreg.a . . . 4 𝐴 = {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾}
4 frgrwopreg.b . . . 4 𝐵 = (𝑉𝐴)
5 frgrwopreg.e . . . 4 𝐸 = (Edg‘𝐺)
61, 2, 3, 4, 5frgrwopreglem4 28086 . . 3 (𝐺 ∈ FriendGraph → ∀𝑣𝐴𝑤𝐵 {𝑣, 𝑤} ∈ 𝐸)
7 snidg 4591 . . . . . . 7 (𝑋𝑉𝑋 ∈ {𝑋})
87adantr 483 . . . . . 6 ((𝑋𝑉𝐴 = {𝑋}) → 𝑋 ∈ {𝑋})
9 eleq2 2899 . . . . . . 7 (𝐴 = {𝑋} → (𝑋𝐴𝑋 ∈ {𝑋}))
109adantl 484 . . . . . 6 ((𝑋𝑉𝐴 = {𝑋}) → (𝑋𝐴𝑋 ∈ {𝑋}))
118, 10mpbird 259 . . . . 5 ((𝑋𝑉𝐴 = {𝑋}) → 𝑋𝐴)
12 preq1 4661 . . . . . . . 8 (𝑣 = 𝑋 → {𝑣, 𝑤} = {𝑋, 𝑤})
1312eleq1d 2895 . . . . . . 7 (𝑣 = 𝑋 → ({𝑣, 𝑤} ∈ 𝐸 ↔ {𝑋, 𝑤} ∈ 𝐸))
1413ralbidv 3195 . . . . . 6 (𝑣 = 𝑋 → (∀𝑤𝐵 {𝑣, 𝑤} ∈ 𝐸 ↔ ∀𝑤𝐵 {𝑋, 𝑤} ∈ 𝐸))
1514rspcv 3616 . . . . 5 (𝑋𝐴 → (∀𝑣𝐴𝑤𝐵 {𝑣, 𝑤} ∈ 𝐸 → ∀𝑤𝐵 {𝑋, 𝑤} ∈ 𝐸))
1611, 15syl 17 . . . 4 ((𝑋𝑉𝐴 = {𝑋}) → (∀𝑣𝐴𝑤𝐵 {𝑣, 𝑤} ∈ 𝐸 → ∀𝑤𝐵 {𝑋, 𝑤} ∈ 𝐸))
17 difeq2 4091 . . . . . . 7 (𝐴 = {𝑋} → (𝑉𝐴) = (𝑉 ∖ {𝑋}))
184, 17syl5eq 2866 . . . . . 6 (𝐴 = {𝑋} → 𝐵 = (𝑉 ∖ {𝑋}))
1918adantl 484 . . . . 5 ((𝑋𝑉𝐴 = {𝑋}) → 𝐵 = (𝑉 ∖ {𝑋}))
2019raleqdv 3414 . . . 4 ((𝑋𝑉𝐴 = {𝑋}) → (∀𝑤𝐵 {𝑋, 𝑤} ∈ 𝐸 ↔ ∀𝑤 ∈ (𝑉 ∖ {𝑋}){𝑋, 𝑤} ∈ 𝐸))
2116, 20sylibd 241 . . 3 ((𝑋𝑉𝐴 = {𝑋}) → (∀𝑣𝐴𝑤𝐵 {𝑣, 𝑤} ∈ 𝐸 → ∀𝑤 ∈ (𝑉 ∖ {𝑋}){𝑋, 𝑤} ∈ 𝐸))
226, 21syl5com 31 . 2 (𝐺 ∈ FriendGraph → ((𝑋𝑉𝐴 = {𝑋}) → ∀𝑤 ∈ (𝑉 ∖ {𝑋}){𝑋, 𝑤} ∈ 𝐸))
23223impib 1111 1 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝐴 = {𝑋}) → ∀𝑤 ∈ (𝑉 ∖ {𝑋}){𝑋, 𝑤} ∈ 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1082   = wceq 1531  wcel 2108  wral 3136  {crab 3140  cdif 3931  {csn 4559  {cpr 4561  cfv 6348  Vtxcvtx 26773  Edgcedg 26824  VtxDegcvtxdg 27239   FriendGraph cfrgr 28029
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1534  df-fal 1544  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7573  df-1st 7681  df-2nd 7682  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-1o 8094  df-2o 8095  df-oadd 8098  df-er 8281  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-dju 9322  df-card 9360  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11631  df-2 11692  df-n0 11890  df-xnn0 11960  df-z 11974  df-uz 12236  df-xadd 12500  df-fz 12885  df-hash 13683  df-edg 26825  df-uhgr 26835  df-ushgr 26836  df-upgr 26859  df-umgr 26860  df-uspgr 26927  df-usgr 26928  df-nbgr 27107  df-vtxdg 27240  df-frgr 28030
This theorem is referenced by:  frgrwopreg1  28089
  Copyright terms: Public domain W3C validator