MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fri Structured version   Visualization version   GIF version

Theorem fri 5519
Description: Property of well-founded relation (one direction of definition). (Contributed by NM, 18-Mar-1997.)
Assertion
Ref Expression
fri (((𝐵𝐶𝑅 Fr 𝐴) ∧ (𝐵𝐴𝐵 ≠ ∅)) → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝑅,𝑦
Allowed substitution hints:   𝐶(𝑥,𝑦)

Proof of Theorem fri
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-fr 5516 . . 3 (𝑅 Fr 𝐴 ↔ ∀𝑧((𝑧𝐴𝑧 ≠ ∅) → ∃𝑥𝑧𝑦𝑧 ¬ 𝑦𝑅𝑥))
2 sseq1 3994 . . . . . 6 (𝑧 = 𝐵 → (𝑧𝐴𝐵𝐴))
3 neeq1 3080 . . . . . 6 (𝑧 = 𝐵 → (𝑧 ≠ ∅ ↔ 𝐵 ≠ ∅))
42, 3anbi12d 632 . . . . 5 (𝑧 = 𝐵 → ((𝑧𝐴𝑧 ≠ ∅) ↔ (𝐵𝐴𝐵 ≠ ∅)))
5 raleq 3407 . . . . . 6 (𝑧 = 𝐵 → (∀𝑦𝑧 ¬ 𝑦𝑅𝑥 ↔ ∀𝑦𝐵 ¬ 𝑦𝑅𝑥))
65rexeqbi1dv 3406 . . . . 5 (𝑧 = 𝐵 → (∃𝑥𝑧𝑦𝑧 ¬ 𝑦𝑅𝑥 ↔ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥))
74, 6imbi12d 347 . . . 4 (𝑧 = 𝐵 → (((𝑧𝐴𝑧 ≠ ∅) → ∃𝑥𝑧𝑦𝑧 ¬ 𝑦𝑅𝑥) ↔ ((𝐵𝐴𝐵 ≠ ∅) → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥)))
87spcgv 3597 . . 3 (𝐵𝐶 → (∀𝑧((𝑧𝐴𝑧 ≠ ∅) → ∃𝑥𝑧𝑦𝑧 ¬ 𝑦𝑅𝑥) → ((𝐵𝐴𝐵 ≠ ∅) → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥)))
91, 8syl5bi 244 . 2 (𝐵𝐶 → (𝑅 Fr 𝐴 → ((𝐵𝐴𝐵 ≠ ∅) → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥)))
109imp31 420 1 (((𝐵𝐶𝑅 Fr 𝐴) ∧ (𝐵𝐴𝐵 ≠ ∅)) → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398  wal 1535   = wceq 1537  wcel 2114  wne 3018  wral 3140  wrex 3141  wss 3938  c0 4293   class class class wbr 5068   Fr wfr 5513
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-clab 2802  df-cleq 2816  df-clel 2895  df-ne 3019  df-ral 3145  df-rex 3146  df-v 3498  df-in 3945  df-ss 3954  df-fr 5516
This theorem is referenced by:  frc  5523  fr2nr  5535  frminex  5537  wereu  5553  wereu2  5554  fr3nr  7496  frfi  8765  fimax2g  8766  fimin2g  8963  wofib  9011  wemapso  9017  wemapso2lem  9018  noinfep  9125  cflim2  9687  isfin1-3  9810  fin12  9837  fpwwe2lem12  10065  fpwwe2lem13  10066  fpwwe2  10067  bnj110  32132  frpomin  33080  frinfm  35012  fdc  35022  fnwe2lem2  39658
  Copyright terms: Public domain W3C validator