MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  friendshipgt3 Structured version   Visualization version   GIF version

Theorem friendshipgt3 28180
Description: The friendship theorem for big graphs: In every finite friendship graph with order greater than 3 there is a vertex which is adjacent to all other vertices. (Contributed by Alexander van der Vekens, 9-Oct-2018.) (Revised by AV, 4-Jun-2021.)
Hypothesis
Ref Expression
frgrreggt1.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
friendshipgt3 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < (♯‘𝑉)) → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))
Distinct variable groups:   𝑣,𝐺   𝑣,𝑉   𝑤,𝐺,𝑣   𝑤,𝑉

Proof of Theorem friendshipgt3
Dummy variables 𝑘 𝑚 𝑡 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frgrreggt1.v . . . 4 𝑉 = (Vtx‘𝐺)
2 eqid 2824 . . . 4 (Edg‘𝐺) = (Edg‘𝐺)
31, 2frgrregorufrg 28108 . . 3 (𝐺 ∈ FriendGraph → ∀𝑘 ∈ ℕ0 (∃𝑢𝑉 ((VtxDeg‘𝐺)‘𝑢) = 𝑘 → (𝐺 RegUSGraph 𝑘 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))))
433ad2ant1 1129 . 2 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < (♯‘𝑉)) → ∀𝑘 ∈ ℕ0 (∃𝑢𝑉 ((VtxDeg‘𝐺)‘𝑢) = 𝑘 → (𝐺 RegUSGraph 𝑘 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))))
51frgrogt3nreg 28179 . 2 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < (♯‘𝑉)) → ∀𝑘 ∈ ℕ0 ¬ 𝐺 RegUSGraph 𝑘)
6 frgrusgr 28043 . . . . . . 7 (𝐺 ∈ FriendGraph → 𝐺 ∈ USGraph)
76anim1i 616 . . . . . 6 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) → (𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin))
81isfusgr 27103 . . . . . 6 (𝐺 ∈ FinUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin))
97, 8sylibr 236 . . . . 5 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) → 𝐺 ∈ FinUSGraph)
1093adant3 1128 . . . 4 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < (♯‘𝑉)) → 𝐺 ∈ FinUSGraph)
11 0red 10647 . . . . . . . 8 ((𝑉 ∈ Fin ∧ 3 < (♯‘𝑉)) → 0 ∈ ℝ)
12 3re 11720 . . . . . . . . 9 3 ∈ ℝ
1312a1i 11 . . . . . . . 8 ((𝑉 ∈ Fin ∧ 3 < (♯‘𝑉)) → 3 ∈ ℝ)
14 hashcl 13720 . . . . . . . . . 10 (𝑉 ∈ Fin → (♯‘𝑉) ∈ ℕ0)
1514nn0red 11959 . . . . . . . . 9 (𝑉 ∈ Fin → (♯‘𝑉) ∈ ℝ)
1615adantr 483 . . . . . . . 8 ((𝑉 ∈ Fin ∧ 3 < (♯‘𝑉)) → (♯‘𝑉) ∈ ℝ)
17 3pos 11745 . . . . . . . . 9 0 < 3
1817a1i 11 . . . . . . . 8 ((𝑉 ∈ Fin ∧ 3 < (♯‘𝑉)) → 0 < 3)
19 simpr 487 . . . . . . . 8 ((𝑉 ∈ Fin ∧ 3 < (♯‘𝑉)) → 3 < (♯‘𝑉))
2011, 13, 16, 18, 19lttrd 10804 . . . . . . 7 ((𝑉 ∈ Fin ∧ 3 < (♯‘𝑉)) → 0 < (♯‘𝑉))
2120gt0ne0d 11207 . . . . . 6 ((𝑉 ∈ Fin ∧ 3 < (♯‘𝑉)) → (♯‘𝑉) ≠ 0)
22 hasheq0 13727 . . . . . . . 8 (𝑉 ∈ Fin → ((♯‘𝑉) = 0 ↔ 𝑉 = ∅))
2322adantr 483 . . . . . . 7 ((𝑉 ∈ Fin ∧ 3 < (♯‘𝑉)) → ((♯‘𝑉) = 0 ↔ 𝑉 = ∅))
2423necon3bid 3063 . . . . . 6 ((𝑉 ∈ Fin ∧ 3 < (♯‘𝑉)) → ((♯‘𝑉) ≠ 0 ↔ 𝑉 ≠ ∅))
2521, 24mpbid 234 . . . . 5 ((𝑉 ∈ Fin ∧ 3 < (♯‘𝑉)) → 𝑉 ≠ ∅)
26253adant1 1126 . . . 4 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < (♯‘𝑉)) → 𝑉 ≠ ∅)
271fusgrn0degnn0 27284 . . . 4 ((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) → ∃𝑡𝑉𝑚 ∈ ℕ0 ((VtxDeg‘𝐺)‘𝑡) = 𝑚)
2810, 26, 27syl2anc 586 . . 3 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < (♯‘𝑉)) → ∃𝑡𝑉𝑚 ∈ ℕ0 ((VtxDeg‘𝐺)‘𝑡) = 𝑚)
29 r19.26 3173 . . . . . . . 8 (∀𝑘 ∈ ℕ0 ((∃𝑢𝑉 ((VtxDeg‘𝐺)‘𝑢) = 𝑘 → (𝐺 RegUSGraph 𝑘 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))) ∧ ¬ 𝐺 RegUSGraph 𝑘) ↔ (∀𝑘 ∈ ℕ0 (∃𝑢𝑉 ((VtxDeg‘𝐺)‘𝑢) = 𝑘 → (𝐺 RegUSGraph 𝑘 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))) ∧ ∀𝑘 ∈ ℕ0 ¬ 𝐺 RegUSGraph 𝑘))
30 simpllr 774 . . . . . . . . . 10 ((((𝑡𝑉𝑚 ∈ ℕ0) ∧ ((VtxDeg‘𝐺)‘𝑡) = 𝑚) ∧ (𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < (♯‘𝑉))) → 𝑚 ∈ ℕ0)
31 fveqeq2 6682 . . . . . . . . . . . . . . 15 (𝑢 = 𝑡 → (((VtxDeg‘𝐺)‘𝑢) = 𝑚 ↔ ((VtxDeg‘𝐺)‘𝑡) = 𝑚))
3231rspcev 3626 . . . . . . . . . . . . . 14 ((𝑡𝑉 ∧ ((VtxDeg‘𝐺)‘𝑡) = 𝑚) → ∃𝑢𝑉 ((VtxDeg‘𝐺)‘𝑢) = 𝑚)
3332ad4ant13 749 . . . . . . . . . . . . 13 ((((𝑡𝑉𝑚 ∈ ℕ0) ∧ ((VtxDeg‘𝐺)‘𝑡) = 𝑚) ∧ (𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < (♯‘𝑉))) → ∃𝑢𝑉 ((VtxDeg‘𝐺)‘𝑢) = 𝑚)
34 ornld 1056 . . . . . . . . . . . . 13 (∃𝑢𝑉 ((VtxDeg‘𝐺)‘𝑢) = 𝑚 → (((∃𝑢𝑉 ((VtxDeg‘𝐺)‘𝑢) = 𝑚 → (𝐺 RegUSGraph 𝑚 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))) ∧ ¬ 𝐺 RegUSGraph 𝑚) → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺)))
3533, 34syl 17 . . . . . . . . . . . 12 ((((𝑡𝑉𝑚 ∈ ℕ0) ∧ ((VtxDeg‘𝐺)‘𝑡) = 𝑚) ∧ (𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < (♯‘𝑉))) → (((∃𝑢𝑉 ((VtxDeg‘𝐺)‘𝑢) = 𝑚 → (𝐺 RegUSGraph 𝑚 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))) ∧ ¬ 𝐺 RegUSGraph 𝑚) → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺)))
3635adantr 483 . . . . . . . . . . 11 (((((𝑡𝑉𝑚 ∈ ℕ0) ∧ ((VtxDeg‘𝐺)‘𝑡) = 𝑚) ∧ (𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < (♯‘𝑉))) ∧ 𝑘 = 𝑚) → (((∃𝑢𝑉 ((VtxDeg‘𝐺)‘𝑢) = 𝑚 → (𝐺 RegUSGraph 𝑚 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))) ∧ ¬ 𝐺 RegUSGraph 𝑚) → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺)))
37 eqeq2 2836 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑚 → (((VtxDeg‘𝐺)‘𝑢) = 𝑘 ↔ ((VtxDeg‘𝐺)‘𝑢) = 𝑚))
3837rexbidv 3300 . . . . . . . . . . . . . . 15 (𝑘 = 𝑚 → (∃𝑢𝑉 ((VtxDeg‘𝐺)‘𝑢) = 𝑘 ↔ ∃𝑢𝑉 ((VtxDeg‘𝐺)‘𝑢) = 𝑚))
39 breq2 5073 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑚 → (𝐺 RegUSGraph 𝑘𝐺 RegUSGraph 𝑚))
4039orbi1d 913 . . . . . . . . . . . . . . 15 (𝑘 = 𝑚 → ((𝐺 RegUSGraph 𝑘 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺)) ↔ (𝐺 RegUSGraph 𝑚 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))))
4138, 40imbi12d 347 . . . . . . . . . . . . . 14 (𝑘 = 𝑚 → ((∃𝑢𝑉 ((VtxDeg‘𝐺)‘𝑢) = 𝑘 → (𝐺 RegUSGraph 𝑘 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))) ↔ (∃𝑢𝑉 ((VtxDeg‘𝐺)‘𝑢) = 𝑚 → (𝐺 RegUSGraph 𝑚 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺)))))
4239notbid 320 . . . . . . . . . . . . . 14 (𝑘 = 𝑚 → (¬ 𝐺 RegUSGraph 𝑘 ↔ ¬ 𝐺 RegUSGraph 𝑚))
4341, 42anbi12d 632 . . . . . . . . . . . . 13 (𝑘 = 𝑚 → (((∃𝑢𝑉 ((VtxDeg‘𝐺)‘𝑢) = 𝑘 → (𝐺 RegUSGraph 𝑘 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))) ∧ ¬ 𝐺 RegUSGraph 𝑘) ↔ ((∃𝑢𝑉 ((VtxDeg‘𝐺)‘𝑢) = 𝑚 → (𝐺 RegUSGraph 𝑚 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))) ∧ ¬ 𝐺 RegUSGraph 𝑚)))
4443imbi1d 344 . . . . . . . . . . . 12 (𝑘 = 𝑚 → ((((∃𝑢𝑉 ((VtxDeg‘𝐺)‘𝑢) = 𝑘 → (𝐺 RegUSGraph 𝑘 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))) ∧ ¬ 𝐺 RegUSGraph 𝑘) → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺)) ↔ (((∃𝑢𝑉 ((VtxDeg‘𝐺)‘𝑢) = 𝑚 → (𝐺 RegUSGraph 𝑚 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))) ∧ ¬ 𝐺 RegUSGraph 𝑚) → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))))
4544adantl 484 . . . . . . . . . . 11 (((((𝑡𝑉𝑚 ∈ ℕ0) ∧ ((VtxDeg‘𝐺)‘𝑡) = 𝑚) ∧ (𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < (♯‘𝑉))) ∧ 𝑘 = 𝑚) → ((((∃𝑢𝑉 ((VtxDeg‘𝐺)‘𝑢) = 𝑘 → (𝐺 RegUSGraph 𝑘 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))) ∧ ¬ 𝐺 RegUSGraph 𝑘) → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺)) ↔ (((∃𝑢𝑉 ((VtxDeg‘𝐺)‘𝑢) = 𝑚 → (𝐺 RegUSGraph 𝑚 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))) ∧ ¬ 𝐺 RegUSGraph 𝑚) → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))))
4636, 45mpbird 259 . . . . . . . . . 10 (((((𝑡𝑉𝑚 ∈ ℕ0) ∧ ((VtxDeg‘𝐺)‘𝑡) = 𝑚) ∧ (𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < (♯‘𝑉))) ∧ 𝑘 = 𝑚) → (((∃𝑢𝑉 ((VtxDeg‘𝐺)‘𝑢) = 𝑘 → (𝐺 RegUSGraph 𝑘 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))) ∧ ¬ 𝐺 RegUSGraph 𝑘) → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺)))
4730, 46rspcimdv 3616 . . . . . . . . 9 ((((𝑡𝑉𝑚 ∈ ℕ0) ∧ ((VtxDeg‘𝐺)‘𝑡) = 𝑚) ∧ (𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < (♯‘𝑉))) → (∀𝑘 ∈ ℕ0 ((∃𝑢𝑉 ((VtxDeg‘𝐺)‘𝑢) = 𝑘 → (𝐺 RegUSGraph 𝑘 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))) ∧ ¬ 𝐺 RegUSGraph 𝑘) → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺)))
4847com12 32 . . . . . . . 8 (∀𝑘 ∈ ℕ0 ((∃𝑢𝑉 ((VtxDeg‘𝐺)‘𝑢) = 𝑘 → (𝐺 RegUSGraph 𝑘 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))) ∧ ¬ 𝐺 RegUSGraph 𝑘) → ((((𝑡𝑉𝑚 ∈ ℕ0) ∧ ((VtxDeg‘𝐺)‘𝑡) = 𝑚) ∧ (𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < (♯‘𝑉))) → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺)))
4929, 48sylbir 237 . . . . . . 7 ((∀𝑘 ∈ ℕ0 (∃𝑢𝑉 ((VtxDeg‘𝐺)‘𝑢) = 𝑘 → (𝐺 RegUSGraph 𝑘 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))) ∧ ∀𝑘 ∈ ℕ0 ¬ 𝐺 RegUSGraph 𝑘) → ((((𝑡𝑉𝑚 ∈ ℕ0) ∧ ((VtxDeg‘𝐺)‘𝑡) = 𝑚) ∧ (𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < (♯‘𝑉))) → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺)))
5049expcom 416 . . . . . 6 (∀𝑘 ∈ ℕ0 ¬ 𝐺 RegUSGraph 𝑘 → (∀𝑘 ∈ ℕ0 (∃𝑢𝑉 ((VtxDeg‘𝐺)‘𝑢) = 𝑘 → (𝐺 RegUSGraph 𝑘 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))) → ((((𝑡𝑉𝑚 ∈ ℕ0) ∧ ((VtxDeg‘𝐺)‘𝑡) = 𝑚) ∧ (𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < (♯‘𝑉))) → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))))
5150com13 88 . . . . 5 ((((𝑡𝑉𝑚 ∈ ℕ0) ∧ ((VtxDeg‘𝐺)‘𝑡) = 𝑚) ∧ (𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < (♯‘𝑉))) → (∀𝑘 ∈ ℕ0 (∃𝑢𝑉 ((VtxDeg‘𝐺)‘𝑢) = 𝑘 → (𝐺 RegUSGraph 𝑘 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))) → (∀𝑘 ∈ ℕ0 ¬ 𝐺 RegUSGraph 𝑘 → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))))
5251exp31 422 . . . 4 ((𝑡𝑉𝑚 ∈ ℕ0) → (((VtxDeg‘𝐺)‘𝑡) = 𝑚 → ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < (♯‘𝑉)) → (∀𝑘 ∈ ℕ0 (∃𝑢𝑉 ((VtxDeg‘𝐺)‘𝑢) = 𝑘 → (𝐺 RegUSGraph 𝑘 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))) → (∀𝑘 ∈ ℕ0 ¬ 𝐺 RegUSGraph 𝑘 → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))))))
5352rexlimivv 3295 . . 3 (∃𝑡𝑉𝑚 ∈ ℕ0 ((VtxDeg‘𝐺)‘𝑡) = 𝑚 → ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < (♯‘𝑉)) → (∀𝑘 ∈ ℕ0 (∃𝑢𝑉 ((VtxDeg‘𝐺)‘𝑢) = 𝑘 → (𝐺 RegUSGraph 𝑘 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))) → (∀𝑘 ∈ ℕ0 ¬ 𝐺 RegUSGraph 𝑘 → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺)))))
5428, 53mpcom 38 . 2 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < (♯‘𝑉)) → (∀𝑘 ∈ ℕ0 (∃𝑢𝑉 ((VtxDeg‘𝐺)‘𝑢) = 𝑘 → (𝐺 RegUSGraph 𝑘 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))) → (∀𝑘 ∈ ℕ0 ¬ 𝐺 RegUSGraph 𝑘 → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))))
554, 5, 54mp2d 49 1 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < (♯‘𝑉)) → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843  w3a 1083   = wceq 1536  wcel 2113  wne 3019  wral 3141  wrex 3142  cdif 3936  c0 4294  {csn 4570  {cpr 4572   class class class wbr 5069  cfv 6358  Fincfn 8512  cr 10539  0cc0 10540   < clt 10678  3c3 11696  0cn0 11900  chash 13693  Vtxcvtx 26784  Edgcedg 26835  USGraphcusgr 26937  FinUSGraphcfusgr 27101  VtxDegcvtxdg 27250   RegUSGraph crusgr 27341   FriendGraph cfrgr 28040
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-inf2 9107  ax-ac2 9888  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617  ax-pre-sup 10618
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-ifp 1058  df-3or 1084  df-3an 1085  df-tru 1539  df-fal 1549  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-disj 5035  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-se 5518  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-isom 6367  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-1st 7692  df-2nd 7693  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-2o 8106  df-oadd 8109  df-er 8292  df-ec 8294  df-qs 8298  df-map 8411  df-pm 8412  df-en 8513  df-dom 8514  df-sdom 8515  df-fin 8516  df-sup 8909  df-inf 8910  df-oi 8977  df-dju 9333  df-card 9371  df-ac 9545  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-div 11301  df-nn 11642  df-2 11703  df-3 11704  df-n0 11901  df-xnn0 11971  df-z 11985  df-uz 12247  df-rp 12393  df-xadd 12511  df-ico 12747  df-fz 12896  df-fzo 13037  df-fl 13165  df-mod 13241  df-seq 13373  df-exp 13433  df-hash 13694  df-word 13865  df-lsw 13918  df-concat 13926  df-s1 13953  df-substr 14006  df-pfx 14036  df-reps 14134  df-csh 14154  df-s2 14213  df-s3 14214  df-cj 14461  df-re 14462  df-im 14463  df-sqrt 14597  df-abs 14598  df-clim 14848  df-sum 15046  df-dvds 15611  df-gcd 15847  df-prm 16019  df-phi 16106  df-vtx 26786  df-iedg 26787  df-edg 26836  df-uhgr 26846  df-ushgr 26847  df-upgr 26870  df-umgr 26871  df-uspgr 26938  df-usgr 26939  df-fusgr 27102  df-nbgr 27118  df-vtxdg 27251  df-rgr 27342  df-rusgr 27343  df-wlks 27384  df-wlkson 27385  df-trls 27477  df-trlson 27478  df-pths 27500  df-spths 27501  df-pthson 27502  df-spthson 27503  df-wwlks 27611  df-wwlksn 27612  df-wwlksnon 27613  df-wspthsn 27614  df-wspthsnon 27615  df-clwwlk 27763  df-clwwlkn 27806  df-clwwlknon 27870  df-conngr 27969  df-frgr 28041
This theorem is referenced by:  friendship  28181
  Copyright terms: Public domain W3C validator