Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frind Structured version   Visualization version   GIF version

Theorem frind 31868
Description: The principle of founded induction. Theorem 4.4 of Don Monk's notes (see frmin 31867). This principle states that if 𝐵 is a subclass of a founded class 𝐴 with the property that every element of 𝐵 whose initial segment is included in 𝐴 is itself equal to 𝐴. Compare wfi 5751 and tfi 7095, which are special cases of this theorem that do not require the axiom of infinity to prove. (Contributed by Scott Fenton, 6-Feb-2011.) (Revised by Mario Carneiro, 26-Jun-2015.)
Assertion
Ref Expression
frind (((𝑅 Fr 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴 ∧ ∀𝑦𝐴 (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵𝑦𝐵))) → 𝐴 = 𝐵)
Distinct variable groups:   𝑦,𝐴   𝑦,𝐵   𝑦,𝑅

Proof of Theorem frind
StepHypRef Expression
1 ssdif0 3975 . . . . . . 7 (𝐴𝐵 ↔ (𝐴𝐵) = ∅)
21necon3bbii 2870 . . . . . 6 𝐴𝐵 ↔ (𝐴𝐵) ≠ ∅)
3 difss 3770 . . . . . . 7 (𝐴𝐵) ⊆ 𝐴
4 frmin 31867 . . . . . . . . 9 (((𝑅 Fr 𝐴𝑅 Se 𝐴) ∧ ((𝐴𝐵) ⊆ 𝐴 ∧ (𝐴𝐵) ≠ ∅)) → ∃𝑦 ∈ (𝐴𝐵)Pred(𝑅, (𝐴𝐵), 𝑦) = ∅)
5 eldif 3617 . . . . . . . . . . . . 13 (𝑦 ∈ (𝐴𝐵) ↔ (𝑦𝐴 ∧ ¬ 𝑦𝐵))
65anbi1i 731 . . . . . . . . . . . 12 ((𝑦 ∈ (𝐴𝐵) ∧ Pred(𝑅, (𝐴𝐵), 𝑦) = ∅) ↔ ((𝑦𝐴 ∧ ¬ 𝑦𝐵) ∧ Pred(𝑅, (𝐴𝐵), 𝑦) = ∅))
7 anass 682 . . . . . . . . . . . 12 (((𝑦𝐴 ∧ ¬ 𝑦𝐵) ∧ Pred(𝑅, (𝐴𝐵), 𝑦) = ∅) ↔ (𝑦𝐴 ∧ (¬ 𝑦𝐵 ∧ Pred(𝑅, (𝐴𝐵), 𝑦) = ∅)))
8 ancom 465 . . . . . . . . . . . . . 14 ((¬ 𝑦𝐵 ∧ Pred(𝑅, (𝐴𝐵), 𝑦) = ∅) ↔ (Pred(𝑅, (𝐴𝐵), 𝑦) = ∅ ∧ ¬ 𝑦𝐵))
9 indif2 3903 . . . . . . . . . . . . . . . . . 18 ((𝑅 “ {𝑦}) ∩ (𝐴𝐵)) = (((𝑅 “ {𝑦}) ∩ 𝐴) ∖ 𝐵)
10 df-pred 5718 . . . . . . . . . . . . . . . . . . 19 Pred(𝑅, (𝐴𝐵), 𝑦) = ((𝐴𝐵) ∩ (𝑅 “ {𝑦}))
11 incom 3838 . . . . . . . . . . . . . . . . . . 19 ((𝐴𝐵) ∩ (𝑅 “ {𝑦})) = ((𝑅 “ {𝑦}) ∩ (𝐴𝐵))
1210, 11eqtri 2673 . . . . . . . . . . . . . . . . . 18 Pred(𝑅, (𝐴𝐵), 𝑦) = ((𝑅 “ {𝑦}) ∩ (𝐴𝐵))
13 df-pred 5718 . . . . . . . . . . . . . . . . . . . 20 Pred(𝑅, 𝐴, 𝑦) = (𝐴 ∩ (𝑅 “ {𝑦}))
14 incom 3838 . . . . . . . . . . . . . . . . . . . 20 (𝐴 ∩ (𝑅 “ {𝑦})) = ((𝑅 “ {𝑦}) ∩ 𝐴)
1513, 14eqtri 2673 . . . . . . . . . . . . . . . . . . 19 Pred(𝑅, 𝐴, 𝑦) = ((𝑅 “ {𝑦}) ∩ 𝐴)
1615difeq1i 3757 . . . . . . . . . . . . . . . . . 18 (Pred(𝑅, 𝐴, 𝑦) ∖ 𝐵) = (((𝑅 “ {𝑦}) ∩ 𝐴) ∖ 𝐵)
179, 12, 163eqtr4i 2683 . . . . . . . . . . . . . . . . 17 Pred(𝑅, (𝐴𝐵), 𝑦) = (Pred(𝑅, 𝐴, 𝑦) ∖ 𝐵)
1817eqeq1i 2656 . . . . . . . . . . . . . . . 16 (Pred(𝑅, (𝐴𝐵), 𝑦) = ∅ ↔ (Pred(𝑅, 𝐴, 𝑦) ∖ 𝐵) = ∅)
19 ssdif0 3975 . . . . . . . . . . . . . . . 16 (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ↔ (Pred(𝑅, 𝐴, 𝑦) ∖ 𝐵) = ∅)
2018, 19bitr4i 267 . . . . . . . . . . . . . . 15 (Pred(𝑅, (𝐴𝐵), 𝑦) = ∅ ↔ Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵)
2120anbi1i 731 . . . . . . . . . . . . . 14 ((Pred(𝑅, (𝐴𝐵), 𝑦) = ∅ ∧ ¬ 𝑦𝐵) ↔ (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ ¬ 𝑦𝐵))
228, 21bitri 264 . . . . . . . . . . . . 13 ((¬ 𝑦𝐵 ∧ Pred(𝑅, (𝐴𝐵), 𝑦) = ∅) ↔ (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ ¬ 𝑦𝐵))
2322anbi2i 730 . . . . . . . . . . . 12 ((𝑦𝐴 ∧ (¬ 𝑦𝐵 ∧ Pred(𝑅, (𝐴𝐵), 𝑦) = ∅)) ↔ (𝑦𝐴 ∧ (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ ¬ 𝑦𝐵)))
246, 7, 233bitri 286 . . . . . . . . . . 11 ((𝑦 ∈ (𝐴𝐵) ∧ Pred(𝑅, (𝐴𝐵), 𝑦) = ∅) ↔ (𝑦𝐴 ∧ (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ ¬ 𝑦𝐵)))
2524rexbii2 3068 . . . . . . . . . 10 (∃𝑦 ∈ (𝐴𝐵)Pred(𝑅, (𝐴𝐵), 𝑦) = ∅ ↔ ∃𝑦𝐴 (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ ¬ 𝑦𝐵))
26 rexanali 3027 . . . . . . . . . 10 (∃𝑦𝐴 (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ ¬ 𝑦𝐵) ↔ ¬ ∀𝑦𝐴 (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵𝑦𝐵))
2725, 26bitri 264 . . . . . . . . 9 (∃𝑦 ∈ (𝐴𝐵)Pred(𝑅, (𝐴𝐵), 𝑦) = ∅ ↔ ¬ ∀𝑦𝐴 (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵𝑦𝐵))
284, 27sylib 208 . . . . . . . 8 (((𝑅 Fr 𝐴𝑅 Se 𝐴) ∧ ((𝐴𝐵) ⊆ 𝐴 ∧ (𝐴𝐵) ≠ ∅)) → ¬ ∀𝑦𝐴 (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵𝑦𝐵))
2928ex 449 . . . . . . 7 ((𝑅 Fr 𝐴𝑅 Se 𝐴) → (((𝐴𝐵) ⊆ 𝐴 ∧ (𝐴𝐵) ≠ ∅) → ¬ ∀𝑦𝐴 (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵𝑦𝐵)))
303, 29mpani 712 . . . . . 6 ((𝑅 Fr 𝐴𝑅 Se 𝐴) → ((𝐴𝐵) ≠ ∅ → ¬ ∀𝑦𝐴 (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵𝑦𝐵)))
312, 30syl5bi 232 . . . . 5 ((𝑅 Fr 𝐴𝑅 Se 𝐴) → (¬ 𝐴𝐵 → ¬ ∀𝑦𝐴 (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵𝑦𝐵)))
3231con4d 114 . . . 4 ((𝑅 Fr 𝐴𝑅 Se 𝐴) → (∀𝑦𝐴 (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵𝑦𝐵) → 𝐴𝐵))
3332imp 444 . . 3 (((𝑅 Fr 𝐴𝑅 Se 𝐴) ∧ ∀𝑦𝐴 (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵𝑦𝐵)) → 𝐴𝐵)
3433adantrl 752 . 2 (((𝑅 Fr 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴 ∧ ∀𝑦𝐴 (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵𝑦𝐵))) → 𝐴𝐵)
35 simprl 809 . 2 (((𝑅 Fr 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴 ∧ ∀𝑦𝐴 (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵𝑦𝐵))) → 𝐵𝐴)
3634, 35eqssd 3653 1 (((𝑅 Fr 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴 ∧ ∀𝑦𝐴 (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵𝑦𝐵))) → 𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383   = wceq 1523  wcel 2030  wne 2823  wral 2941  wrex 2942  cdif 3604  cin 3606  wss 3607  c0 3948  {csn 4210   Fr wfr 5099   Se wse 5100  ccnv 5142  cima 5146  Predcpred 5717
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-om 7108  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-trpred 31842
This theorem is referenced by:  frindi  31869  frinsg  31870
  Copyright terms: Public domain W3C validator