![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > frirr | Structured version Visualization version GIF version |
Description: A well-founded relation is irreflexive. Special case of Proposition 6.23 of [TakeutiZaring] p. 30. (Contributed by NM, 2-Jan-1994.) (Revised by Mario Carneiro, 22-Jun-2015.) |
Ref | Expression |
---|---|
frirr | ⊢ ((𝑅 Fr 𝐴 ∧ 𝐵 ∈ 𝐴) → ¬ 𝐵𝑅𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 474 | . . 3 ⊢ ((𝑅 Fr 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝑅 Fr 𝐴) | |
2 | snssi 4484 | . . . 4 ⊢ (𝐵 ∈ 𝐴 → {𝐵} ⊆ 𝐴) | |
3 | 2 | adantl 473 | . . 3 ⊢ ((𝑅 Fr 𝐴 ∧ 𝐵 ∈ 𝐴) → {𝐵} ⊆ 𝐴) |
4 | snnzg 4451 | . . . 4 ⊢ (𝐵 ∈ 𝐴 → {𝐵} ≠ ∅) | |
5 | 4 | adantl 473 | . . 3 ⊢ ((𝑅 Fr 𝐴 ∧ 𝐵 ∈ 𝐴) → {𝐵} ≠ ∅) |
6 | snex 5057 | . . . 4 ⊢ {𝐵} ∈ V | |
7 | 6 | frc 5232 | . . 3 ⊢ ((𝑅 Fr 𝐴 ∧ {𝐵} ⊆ 𝐴 ∧ {𝐵} ≠ ∅) → ∃𝑦 ∈ {𝐵} {𝑥 ∈ {𝐵} ∣ 𝑥𝑅𝑦} = ∅) |
8 | 1, 3, 5, 7 | syl3anc 1477 | . 2 ⊢ ((𝑅 Fr 𝐴 ∧ 𝐵 ∈ 𝐴) → ∃𝑦 ∈ {𝐵} {𝑥 ∈ {𝐵} ∣ 𝑥𝑅𝑦} = ∅) |
9 | rabeq0 4100 | . . . . . 6 ⊢ ({𝑥 ∈ {𝐵} ∣ 𝑥𝑅𝑦} = ∅ ↔ ∀𝑥 ∈ {𝐵} ¬ 𝑥𝑅𝑦) | |
10 | breq2 4808 | . . . . . . . 8 ⊢ (𝑦 = 𝐵 → (𝑥𝑅𝑦 ↔ 𝑥𝑅𝐵)) | |
11 | 10 | notbid 307 | . . . . . . 7 ⊢ (𝑦 = 𝐵 → (¬ 𝑥𝑅𝑦 ↔ ¬ 𝑥𝑅𝐵)) |
12 | 11 | ralbidv 3124 | . . . . . 6 ⊢ (𝑦 = 𝐵 → (∀𝑥 ∈ {𝐵} ¬ 𝑥𝑅𝑦 ↔ ∀𝑥 ∈ {𝐵} ¬ 𝑥𝑅𝐵)) |
13 | 9, 12 | syl5bb 272 | . . . . 5 ⊢ (𝑦 = 𝐵 → ({𝑥 ∈ {𝐵} ∣ 𝑥𝑅𝑦} = ∅ ↔ ∀𝑥 ∈ {𝐵} ¬ 𝑥𝑅𝐵)) |
14 | 13 | rexsng 4363 | . . . 4 ⊢ (𝐵 ∈ 𝐴 → (∃𝑦 ∈ {𝐵} {𝑥 ∈ {𝐵} ∣ 𝑥𝑅𝑦} = ∅ ↔ ∀𝑥 ∈ {𝐵} ¬ 𝑥𝑅𝐵)) |
15 | breq1 4807 | . . . . . 6 ⊢ (𝑥 = 𝐵 → (𝑥𝑅𝐵 ↔ 𝐵𝑅𝐵)) | |
16 | 15 | notbid 307 | . . . . 5 ⊢ (𝑥 = 𝐵 → (¬ 𝑥𝑅𝐵 ↔ ¬ 𝐵𝑅𝐵)) |
17 | 16 | ralsng 4362 | . . . 4 ⊢ (𝐵 ∈ 𝐴 → (∀𝑥 ∈ {𝐵} ¬ 𝑥𝑅𝐵 ↔ ¬ 𝐵𝑅𝐵)) |
18 | 14, 17 | bitrd 268 | . . 3 ⊢ (𝐵 ∈ 𝐴 → (∃𝑦 ∈ {𝐵} {𝑥 ∈ {𝐵} ∣ 𝑥𝑅𝑦} = ∅ ↔ ¬ 𝐵𝑅𝐵)) |
19 | 18 | adantl 473 | . 2 ⊢ ((𝑅 Fr 𝐴 ∧ 𝐵 ∈ 𝐴) → (∃𝑦 ∈ {𝐵} {𝑥 ∈ {𝐵} ∣ 𝑥𝑅𝑦} = ∅ ↔ ¬ 𝐵𝑅𝐵)) |
20 | 8, 19 | mpbid 222 | 1 ⊢ ((𝑅 Fr 𝐴 ∧ 𝐵 ∈ 𝐴) → ¬ 𝐵𝑅𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1632 ∈ wcel 2139 ≠ wne 2932 ∀wral 3050 ∃wrex 3051 {crab 3054 ⊆ wss 3715 ∅c0 4058 {csn 4321 class class class wbr 4804 Fr wfr 5222 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pr 5055 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-sbc 3577 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-sn 4322 df-pr 4324 df-op 4328 df-br 4805 df-fr 5225 |
This theorem is referenced by: efrirr 5247 predfrirr 5870 dfwe2 7146 bnj1417 31416 efrunt 31897 ifr0 39156 |
Copyright terms: Public domain | W3C validator |