MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frlm0 Structured version   Visualization version   GIF version

Theorem frlm0 20901
Description: Zero in a free module (ring constraint is stronger than necessary, but allows use of frlmlss 20898). (Contributed by Stefan O'Rear, 4-Feb-2015.)
Hypotheses
Ref Expression
frlmval.f 𝐹 = (𝑅 freeLMod 𝐼)
frlm0.z 0 = (0g𝑅)
Assertion
Ref Expression
frlm0 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → (𝐼 × { 0 }) = (0g𝐹))

Proof of Theorem frlm0
StepHypRef Expression
1 rlmlmod 19980 . . . . 5 (𝑅 ∈ Ring → (ringLMod‘𝑅) ∈ LMod)
2 eqid 2824 . . . . . 6 ((ringLMod‘𝑅) ↑s 𝐼) = ((ringLMod‘𝑅) ↑s 𝐼)
32pwslmod 19745 . . . . 5 (((ringLMod‘𝑅) ∈ LMod ∧ 𝐼𝑊) → ((ringLMod‘𝑅) ↑s 𝐼) ∈ LMod)
41, 3sylan 582 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → ((ringLMod‘𝑅) ↑s 𝐼) ∈ LMod)
5 frlmval.f . . . . 5 𝐹 = (𝑅 freeLMod 𝐼)
6 eqid 2824 . . . . 5 (Base‘𝐹) = (Base‘𝐹)
7 eqid 2824 . . . . 5 (LSubSp‘((ringLMod‘𝑅) ↑s 𝐼)) = (LSubSp‘((ringLMod‘𝑅) ↑s 𝐼))
85, 6, 7frlmlss 20898 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → (Base‘𝐹) ∈ (LSubSp‘((ringLMod‘𝑅) ↑s 𝐼)))
97lsssubg 19732 . . . 4 ((((ringLMod‘𝑅) ↑s 𝐼) ∈ LMod ∧ (Base‘𝐹) ∈ (LSubSp‘((ringLMod‘𝑅) ↑s 𝐼))) → (Base‘𝐹) ∈ (SubGrp‘((ringLMod‘𝑅) ↑s 𝐼)))
104, 8, 9syl2anc 586 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → (Base‘𝐹) ∈ (SubGrp‘((ringLMod‘𝑅) ↑s 𝐼)))
11 eqid 2824 . . . 4 (((ringLMod‘𝑅) ↑s 𝐼) ↾s (Base‘𝐹)) = (((ringLMod‘𝑅) ↑s 𝐼) ↾s (Base‘𝐹))
12 eqid 2824 . . . 4 (0g‘((ringLMod‘𝑅) ↑s 𝐼)) = (0g‘((ringLMod‘𝑅) ↑s 𝐼))
1311, 12subg0 18288 . . 3 ((Base‘𝐹) ∈ (SubGrp‘((ringLMod‘𝑅) ↑s 𝐼)) → (0g‘((ringLMod‘𝑅) ↑s 𝐼)) = (0g‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s (Base‘𝐹))))
1410, 13syl 17 . 2 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → (0g‘((ringLMod‘𝑅) ↑s 𝐼)) = (0g‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s (Base‘𝐹))))
15 lmodgrp 19644 . . . 4 ((ringLMod‘𝑅) ∈ LMod → (ringLMod‘𝑅) ∈ Grp)
16 grpmnd 18113 . . . 4 ((ringLMod‘𝑅) ∈ Grp → (ringLMod‘𝑅) ∈ Mnd)
171, 15, 163syl 18 . . 3 (𝑅 ∈ Ring → (ringLMod‘𝑅) ∈ Mnd)
18 frlm0.z . . . . 5 0 = (0g𝑅)
19 rlm0 19972 . . . . 5 (0g𝑅) = (0g‘(ringLMod‘𝑅))
2018, 19eqtri 2847 . . . 4 0 = (0g‘(ringLMod‘𝑅))
212, 20pws0g 17950 . . 3 (((ringLMod‘𝑅) ∈ Mnd ∧ 𝐼𝑊) → (𝐼 × { 0 }) = (0g‘((ringLMod‘𝑅) ↑s 𝐼)))
2217, 21sylan 582 . 2 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → (𝐼 × { 0 }) = (0g‘((ringLMod‘𝑅) ↑s 𝐼)))
235, 6frlmpws 20897 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → 𝐹 = (((ringLMod‘𝑅) ↑s 𝐼) ↾s (Base‘𝐹)))
2423fveq2d 6677 . 2 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → (0g𝐹) = (0g‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s (Base‘𝐹))))
2514, 22, 243eqtr4d 2869 1 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → (𝐼 × { 0 }) = (0g𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1536  wcel 2113  {csn 4570   × cxp 5556  cfv 6358  (class class class)co 7159  Basecbs 16486  s cress 16487  0gc0g 16716  s cpws 16723  Mndcmnd 17914  Grpcgrp 18106  SubGrpcsubg 18276  Ringcrg 19300  LModclmod 19637  LSubSpclss 19706  ringLModcrglmod 19944   freeLMod cfrlm 20893
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-1st 7692  df-2nd 7693  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-oadd 8109  df-er 8292  df-map 8411  df-ixp 8465  df-en 8513  df-dom 8514  df-sdom 8515  df-fin 8516  df-sup 8909  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-nn 11642  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-dec 12102  df-uz 12247  df-fz 12896  df-struct 16488  df-ndx 16489  df-slot 16490  df-base 16492  df-sets 16493  df-ress 16494  df-plusg 16581  df-mulr 16582  df-sca 16584  df-vsca 16585  df-ip 16586  df-tset 16587  df-ple 16588  df-ds 16590  df-hom 16592  df-cco 16593  df-0g 16718  df-prds 16724  df-pws 16726  df-mgm 17855  df-sgrp 17904  df-mnd 17915  df-grp 18109  df-minusg 18110  df-sbg 18111  df-subg 18279  df-mgp 19243  df-ur 19255  df-ring 19302  df-subrg 19536  df-lmod 19639  df-lss 19707  df-sra 19947  df-rgmod 19948  df-dsmm 20879  df-frlm 20894
This theorem is referenced by:  frlmsslss  20921  islindf5  20986  mat0op  21031  rrxcph  23998  rrx0  24003  matunitlindflem1  34892  uvcn0  39157  zlmodzxz0  44411  aacllem  44909
  Copyright terms: Public domain W3C validator