MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frlmphl Structured version   Visualization version   GIF version

Theorem frlmphl 19881
Description: Conditions for a free module to be a pre-Hilbert space. (Contributed by Thierry Arnoux, 21-Jun-2019.) (Proof shortened by AV, 21-Jul-2019.)
Hypotheses
Ref Expression
frlmphl.y 𝑌 = (𝑅 freeLMod 𝐼)
frlmphl.b 𝐵 = (Base‘𝑅)
frlmphl.t · = (.r𝑅)
frlmphl.v 𝑉 = (Base‘𝑌)
frlmphl.j , = (·𝑖𝑌)
frlmphl.o 𝑂 = (0g𝑌)
frlmphl.0 0 = (0g𝑅)
frlmphl.s = (*𝑟𝑅)
frlmphl.f (𝜑𝑅 ∈ Field)
frlmphl.m ((𝜑𝑔𝑉 ∧ (𝑔 , 𝑔) = 0 ) → 𝑔 = 𝑂)
frlmphl.u ((𝜑𝑥𝐵) → ( 𝑥) = 𝑥)
frlmphl.i (𝜑𝐼𝑊)
Assertion
Ref Expression
frlmphl (𝜑𝑌 ∈ PreHil)
Distinct variable groups:   𝐵,𝑔,𝑥   𝑔,𝐼,𝑥   𝑅,𝑔,𝑥   𝑔,𝑉,𝑥   𝑔,𝑊,𝑥   · ,𝑔,𝑥   𝑔,𝑌,𝑥   0 ,𝑔,𝑥   𝜑,𝑔,𝑥   , ,𝑔,𝑥   𝑔,𝑂   𝑥,
Allowed substitution hints:   (𝑔)   𝑂(𝑥)

Proof of Theorem frlmphl
Dummy variables 𝑓 𝑒 𝑖 𝑦 𝑧 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frlmphl.v . . 3 𝑉 = (Base‘𝑌)
21a1i 11 . 2 (𝜑𝑉 = (Base‘𝑌))
3 eqidd 2610 . 2 (𝜑 → (+g𝑌) = (+g𝑌))
4 eqidd 2610 . 2 (𝜑 → ( ·𝑠𝑌) = ( ·𝑠𝑌))
5 frlmphl.j . . 3 , = (·𝑖𝑌)
65a1i 11 . 2 (𝜑, = (·𝑖𝑌))
7 frlmphl.o . . 3 𝑂 = (0g𝑌)
87a1i 11 . 2 (𝜑𝑂 = (0g𝑌))
9 frlmphl.f . . . . 5 (𝜑𝑅 ∈ Field)
10 isfld 18525 . . . . 5 (𝑅 ∈ Field ↔ (𝑅 ∈ DivRing ∧ 𝑅 ∈ CRing))
119, 10sylib 206 . . . 4 (𝜑 → (𝑅 ∈ DivRing ∧ 𝑅 ∈ CRing))
1211simpld 473 . . 3 (𝜑𝑅 ∈ DivRing)
13 frlmphl.i . . 3 (𝜑𝐼𝑊)
14 frlmphl.y . . . 4 𝑌 = (𝑅 freeLMod 𝐼)
1514frlmsca 19858 . . 3 ((𝑅 ∈ DivRing ∧ 𝐼𝑊) → 𝑅 = (Scalar‘𝑌))
1612, 13, 15syl2anc 690 . 2 (𝜑𝑅 = (Scalar‘𝑌))
17 frlmphl.b . . 3 𝐵 = (Base‘𝑅)
1817a1i 11 . 2 (𝜑𝐵 = (Base‘𝑅))
19 eqidd 2610 . 2 (𝜑 → (+g𝑅) = (+g𝑅))
20 frlmphl.t . . 3 · = (.r𝑅)
2120a1i 11 . 2 (𝜑· = (.r𝑅))
22 frlmphl.s . . 3 = (*𝑟𝑅)
2322a1i 11 . 2 (𝜑 = (*𝑟𝑅))
24 frlmphl.0 . . 3 0 = (0g𝑅)
2524a1i 11 . 2 (𝜑0 = (0g𝑅))
26 drngring 18523 . . . . 5 (𝑅 ∈ DivRing → 𝑅 ∈ Ring)
2712, 26syl 17 . . . 4 (𝜑𝑅 ∈ Ring)
2814frlmlmod 19854 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → 𝑌 ∈ LMod)
2927, 13, 28syl2anc 690 . . 3 (𝜑𝑌 ∈ LMod)
3016, 12eqeltrrd 2688 . . 3 (𝜑 → (Scalar‘𝑌) ∈ DivRing)
31 eqid 2609 . . . 4 (Scalar‘𝑌) = (Scalar‘𝑌)
3231islvec 18871 . . 3 (𝑌 ∈ LVec ↔ (𝑌 ∈ LMod ∧ (Scalar‘𝑌) ∈ DivRing))
3329, 30, 32sylanbrc 694 . 2 (𝜑𝑌 ∈ LVec)
3411simprd 477 . . 3 (𝜑𝑅 ∈ CRing)
35 frlmphl.u . . 3 ((𝜑𝑥𝐵) → ( 𝑥) = 𝑥)
3617, 22, 34, 35idsrngd 18631 . 2 (𝜑𝑅 ∈ *-Ring)
37133ad2ant1 1074 . . . . 5 ((𝜑𝑔𝑉𝑉) → 𝐼𝑊)
38273ad2ant1 1074 . . . . 5 ((𝜑𝑔𝑉𝑉) → 𝑅 ∈ Ring)
39 simp2 1054 . . . . 5 ((𝜑𝑔𝑉𝑉) → 𝑔𝑉)
40 simp3 1055 . . . . 5 ((𝜑𝑔𝑉𝑉) → 𝑉)
4114, 17, 20, 1, 5frlmipval 19879 . . . . 5 (((𝐼𝑊𝑅 ∈ Ring) ∧ (𝑔𝑉𝑉)) → (𝑔 , ) = (𝑅 Σg (𝑔𝑓 · )))
4237, 38, 39, 40, 41syl22anc 1318 . . . 4 ((𝜑𝑔𝑉𝑉) → (𝑔 , ) = (𝑅 Σg (𝑔𝑓 · )))
4314, 17, 1frlmbasmap 19864 . . . . . . . . 9 ((𝐼𝑊𝑔𝑉) → 𝑔 ∈ (𝐵𝑚 𝐼))
4437, 39, 43syl2anc 690 . . . . . . . 8 ((𝜑𝑔𝑉𝑉) → 𝑔 ∈ (𝐵𝑚 𝐼))
45 elmapi 7742 . . . . . . . 8 (𝑔 ∈ (𝐵𝑚 𝐼) → 𝑔:𝐼𝐵)
4644, 45syl 17 . . . . . . 7 ((𝜑𝑔𝑉𝑉) → 𝑔:𝐼𝐵)
47 ffn 5944 . . . . . . 7 (𝑔:𝐼𝐵𝑔 Fn 𝐼)
4846, 47syl 17 . . . . . 6 ((𝜑𝑔𝑉𝑉) → 𝑔 Fn 𝐼)
4914, 17, 1frlmbasmap 19864 . . . . . . . . 9 ((𝐼𝑊𝑉) → ∈ (𝐵𝑚 𝐼))
5037, 40, 49syl2anc 690 . . . . . . . 8 ((𝜑𝑔𝑉𝑉) → ∈ (𝐵𝑚 𝐼))
51 elmapi 7742 . . . . . . . 8 ( ∈ (𝐵𝑚 𝐼) → :𝐼𝐵)
5250, 51syl 17 . . . . . . 7 ((𝜑𝑔𝑉𝑉) → :𝐼𝐵)
53 ffn 5944 . . . . . . 7 (:𝐼𝐵 Fn 𝐼)
5452, 53syl 17 . . . . . 6 ((𝜑𝑔𝑉𝑉) → Fn 𝐼)
55 inidm 3783 . . . . . 6 (𝐼𝐼) = 𝐼
56 eqidd 2610 . . . . . 6 (((𝜑𝑔𝑉𝑉) ∧ 𝑥𝐼) → (𝑔𝑥) = (𝑔𝑥))
57 eqidd 2610 . . . . . 6 (((𝜑𝑔𝑉𝑉) ∧ 𝑥𝐼) → (𝑥) = (𝑥))
5848, 54, 37, 37, 55, 56, 57offval 6779 . . . . 5 ((𝜑𝑔𝑉𝑉) → (𝑔𝑓 · ) = (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑥))))
5958oveq2d 6543 . . . 4 ((𝜑𝑔𝑉𝑉) → (𝑅 Σg (𝑔𝑓 · )) = (𝑅 Σg (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑥)))))
6042, 59eqtrd 2643 . . 3 ((𝜑𝑔𝑉𝑉) → (𝑔 , ) = (𝑅 Σg (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑥)))))
61 ringcmn 18350 . . . . . 6 (𝑅 ∈ Ring → 𝑅 ∈ CMnd)
6227, 61syl 17 . . . . 5 (𝜑𝑅 ∈ CMnd)
63623ad2ant1 1074 . . . 4 ((𝜑𝑔𝑉𝑉) → 𝑅 ∈ CMnd)
6438adantr 479 . . . . . 6 (((𝜑𝑔𝑉𝑉) ∧ 𝑥𝐼) → 𝑅 ∈ Ring)
6546ffvelrnda 6252 . . . . . 6 (((𝜑𝑔𝑉𝑉) ∧ 𝑥𝐼) → (𝑔𝑥) ∈ 𝐵)
6652ffvelrnda 6252 . . . . . 6 (((𝜑𝑔𝑉𝑉) ∧ 𝑥𝐼) → (𝑥) ∈ 𝐵)
6717, 20ringcl 18330 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑔𝑥) ∈ 𝐵 ∧ (𝑥) ∈ 𝐵) → ((𝑔𝑥) · (𝑥)) ∈ 𝐵)
6864, 65, 66, 67syl3anc 1317 . . . . 5 (((𝜑𝑔𝑉𝑉) ∧ 𝑥𝐼) → ((𝑔𝑥) · (𝑥)) ∈ 𝐵)
69 eqid 2609 . . . . 5 (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑥))) = (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑥)))
7068, 69fmptd 6277 . . . 4 ((𝜑𝑔𝑉𝑉) → (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑥))):𝐼𝐵)
71 frlmphl.m . . . . 5 ((𝜑𝑔𝑉 ∧ (𝑔 , 𝑔) = 0 ) → 𝑔 = 𝑂)
7214, 17, 20, 1, 5, 7, 24, 22, 9, 71, 35, 13frlmphllem 19880 . . . 4 ((𝜑𝑔𝑉𝑉) → (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑥))) finSupp 0 )
7317, 24, 63, 37, 70, 72gsumcl 18085 . . 3 ((𝜑𝑔𝑉𝑉) → (𝑅 Σg (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑥)))) ∈ 𝐵)
7460, 73eqeltrd 2687 . 2 ((𝜑𝑔𝑉𝑉) → (𝑔 , ) ∈ 𝐵)
75 eqid 2609 . . . 4 (+g𝑅) = (+g𝑅)
76623ad2ant1 1074 . . . 4 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → 𝑅 ∈ CMnd)
77133ad2ant1 1074 . . . 4 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → 𝐼𝑊)
78273ad2ant1 1074 . . . . . 6 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → 𝑅 ∈ Ring)
7978adantr 479 . . . . 5 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ 𝑥𝐼) → 𝑅 ∈ Ring)
80 simp2 1054 . . . . . 6 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → 𝑘𝐵)
8180adantr 479 . . . . 5 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ 𝑥𝐼) → 𝑘𝐵)
82 simp31 1089 . . . . . . . . 9 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → 𝑔𝑉)
8377, 82, 43syl2anc 690 . . . . . . . 8 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → 𝑔 ∈ (𝐵𝑚 𝐼))
8483, 45syl 17 . . . . . . 7 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → 𝑔:𝐼𝐵)
8584ffvelrnda 6252 . . . . . 6 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ 𝑥𝐼) → (𝑔𝑥) ∈ 𝐵)
86 simp33 1091 . . . . . . . . 9 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → 𝑖𝑉)
8714, 17, 1frlmbasmap 19864 . . . . . . . . 9 ((𝐼𝑊𝑖𝑉) → 𝑖 ∈ (𝐵𝑚 𝐼))
8877, 86, 87syl2anc 690 . . . . . . . 8 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → 𝑖 ∈ (𝐵𝑚 𝐼))
89 elmapi 7742 . . . . . . . 8 (𝑖 ∈ (𝐵𝑚 𝐼) → 𝑖:𝐼𝐵)
9088, 89syl 17 . . . . . . 7 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → 𝑖:𝐼𝐵)
9190ffvelrnda 6252 . . . . . 6 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ 𝑥𝐼) → (𝑖𝑥) ∈ 𝐵)
9217, 20ringcl 18330 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑔𝑥) ∈ 𝐵 ∧ (𝑖𝑥) ∈ 𝐵) → ((𝑔𝑥) · (𝑖𝑥)) ∈ 𝐵)
9379, 85, 91, 92syl3anc 1317 . . . . 5 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ 𝑥𝐼) → ((𝑔𝑥) · (𝑖𝑥)) ∈ 𝐵)
9417, 20ringcl 18330 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑘𝐵 ∧ ((𝑔𝑥) · (𝑖𝑥)) ∈ 𝐵) → (𝑘 · ((𝑔𝑥) · (𝑖𝑥))) ∈ 𝐵)
9579, 81, 93, 94syl3anc 1317 . . . 4 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ 𝑥𝐼) → (𝑘 · ((𝑔𝑥) · (𝑖𝑥))) ∈ 𝐵)
96 simp32 1090 . . . . . . . 8 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → 𝑉)
9777, 96, 49syl2anc 690 . . . . . . 7 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → ∈ (𝐵𝑚 𝐼))
9897, 51syl 17 . . . . . 6 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → :𝐼𝐵)
9998ffvelrnda 6252 . . . . 5 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ 𝑥𝐼) → (𝑥) ∈ 𝐵)
10017, 20ringcl 18330 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑥) ∈ 𝐵 ∧ (𝑖𝑥) ∈ 𝐵) → ((𝑥) · (𝑖𝑥)) ∈ 𝐵)
10179, 99, 91, 100syl3anc 1317 . . . 4 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ 𝑥𝐼) → ((𝑥) · (𝑖𝑥)) ∈ 𝐵)
102 eqidd 2610 . . . 4 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → (𝑥𝐼 ↦ (𝑘 · ((𝑔𝑥) · (𝑖𝑥)))) = (𝑥𝐼 ↦ (𝑘 · ((𝑔𝑥) · (𝑖𝑥)))))
103 eqidd 2610 . . . 4 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → (𝑥𝐼 ↦ ((𝑥) · (𝑖𝑥))) = (𝑥𝐼 ↦ ((𝑥) · (𝑖𝑥))))
104 fveq2 6088 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑔𝑥) = (𝑔𝑦))
105104oveq2d 6543 . . . . . . . 8 (𝑥 = 𝑦 → (𝑘 · (𝑔𝑥)) = (𝑘 · (𝑔𝑦)))
106105cbvmptv 4672 . . . . . . 7 (𝑥𝐼 ↦ (𝑘 · (𝑔𝑥))) = (𝑦𝐼 ↦ (𝑘 · (𝑔𝑦)))
107106oveq1i 6537 . . . . . 6 ((𝑥𝐼 ↦ (𝑘 · (𝑔𝑥))) ∘𝑓 · 𝑖) = ((𝑦𝐼 ↦ (𝑘 · (𝑔𝑦))) ∘𝑓 · 𝑖)
10817, 20ringcl 18330 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ 𝑘𝐵 ∧ (𝑔𝑥) ∈ 𝐵) → (𝑘 · (𝑔𝑥)) ∈ 𝐵)
10979, 81, 85, 108syl3anc 1317 . . . . . . . . . . 11 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ 𝑥𝐼) → (𝑘 · (𝑔𝑥)) ∈ 𝐵)
110 eqid 2609 . . . . . . . . . . 11 (𝑥𝐼 ↦ (𝑘 · (𝑔𝑥))) = (𝑥𝐼 ↦ (𝑘 · (𝑔𝑥)))
111109, 110fmptd 6277 . . . . . . . . . 10 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → (𝑥𝐼 ↦ (𝑘 · (𝑔𝑥))):𝐼𝐵)
112 ffn 5944 . . . . . . . . . 10 ((𝑥𝐼 ↦ (𝑘 · (𝑔𝑥))):𝐼𝐵 → (𝑥𝐼 ↦ (𝑘 · (𝑔𝑥))) Fn 𝐼)
113111, 112syl 17 . . . . . . . . 9 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → (𝑥𝐼 ↦ (𝑘 · (𝑔𝑥))) Fn 𝐼)
114106fneq1i 5885 . . . . . . . . 9 ((𝑥𝐼 ↦ (𝑘 · (𝑔𝑥))) Fn 𝐼 ↔ (𝑦𝐼 ↦ (𝑘 · (𝑔𝑦))) Fn 𝐼)
115113, 114sylib 206 . . . . . . . 8 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → (𝑦𝐼 ↦ (𝑘 · (𝑔𝑦))) Fn 𝐼)
116 ffn 5944 . . . . . . . . 9 (𝑖:𝐼𝐵𝑖 Fn 𝐼)
11790, 116syl 17 . . . . . . . 8 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → 𝑖 Fn 𝐼)
118 eqidd 2610 . . . . . . . . 9 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ 𝑥𝐼) → (𝑦𝐼 ↦ (𝑘 · (𝑔𝑦))) = (𝑦𝐼 ↦ (𝑘 · (𝑔𝑦))))
119 simpr 475 . . . . . . . . . . 11 ((((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ 𝑥𝐼) ∧ 𝑦 = 𝑥) → 𝑦 = 𝑥)
120119fveq2d 6092 . . . . . . . . . 10 ((((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ 𝑥𝐼) ∧ 𝑦 = 𝑥) → (𝑔𝑦) = (𝑔𝑥))
121120oveq2d 6543 . . . . . . . . 9 ((((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ 𝑥𝐼) ∧ 𝑦 = 𝑥) → (𝑘 · (𝑔𝑦)) = (𝑘 · (𝑔𝑥)))
122 simpr 475 . . . . . . . . 9 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ 𝑥𝐼) → 𝑥𝐼)
123 ovex 6555 . . . . . . . . . 10 (𝑘 · (𝑔𝑥)) ∈ V
124123a1i 11 . . . . . . . . 9 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ 𝑥𝐼) → (𝑘 · (𝑔𝑥)) ∈ V)
125118, 121, 122, 124fvmptd 6182 . . . . . . . 8 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ 𝑥𝐼) → ((𝑦𝐼 ↦ (𝑘 · (𝑔𝑦)))‘𝑥) = (𝑘 · (𝑔𝑥)))
126 eqidd 2610 . . . . . . . 8 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ 𝑥𝐼) → (𝑖𝑥) = (𝑖𝑥))
127115, 117, 77, 77, 55, 125, 126offval 6779 . . . . . . 7 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → ((𝑦𝐼 ↦ (𝑘 · (𝑔𝑦))) ∘𝑓 · 𝑖) = (𝑥𝐼 ↦ ((𝑘 · (𝑔𝑥)) · (𝑖𝑥))))
12817, 20ringass 18333 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ (𝑘𝐵 ∧ (𝑔𝑥) ∈ 𝐵 ∧ (𝑖𝑥) ∈ 𝐵)) → ((𝑘 · (𝑔𝑥)) · (𝑖𝑥)) = (𝑘 · ((𝑔𝑥) · (𝑖𝑥))))
12979, 81, 85, 91, 128syl13anc 1319 . . . . . . . 8 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ 𝑥𝐼) → ((𝑘 · (𝑔𝑥)) · (𝑖𝑥)) = (𝑘 · ((𝑔𝑥) · (𝑖𝑥))))
130129mpteq2dva 4666 . . . . . . 7 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → (𝑥𝐼 ↦ ((𝑘 · (𝑔𝑥)) · (𝑖𝑥))) = (𝑥𝐼 ↦ (𝑘 · ((𝑔𝑥) · (𝑖𝑥)))))
131127, 130eqtrd 2643 . . . . . 6 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → ((𝑦𝐼 ↦ (𝑘 · (𝑔𝑦))) ∘𝑓 · 𝑖) = (𝑥𝐼 ↦ (𝑘 · ((𝑔𝑥) · (𝑖𝑥)))))
132107, 131syl5eq 2655 . . . . 5 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → ((𝑥𝐼 ↦ (𝑘 · (𝑔𝑥))) ∘𝑓 · 𝑖) = (𝑥𝐼 ↦ (𝑘 · ((𝑔𝑥) · (𝑖𝑥)))))
133 ovex 6555 . . . . . . 7 ((𝑥𝐼 ↦ (𝑘 · (𝑔𝑥))) ∘𝑓 · 𝑖) ∈ V
134133a1i 11 . . . . . 6 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → ((𝑥𝐼 ↦ (𝑘 · (𝑔𝑥))) ∘𝑓 · 𝑖) ∈ V)
135 funmpt 5826 . . . . . . 7 Fun (𝑧𝐼 ↦ (((𝑥𝐼 ↦ (𝑘 · (𝑔𝑥)))‘𝑧) · (𝑖𝑧)))
136 eqidd 2610 . . . . . . . . 9 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ 𝑧𝐼) → ((𝑥𝐼 ↦ (𝑘 · (𝑔𝑥)))‘𝑧) = ((𝑥𝐼 ↦ (𝑘 · (𝑔𝑥)))‘𝑧))
137 eqidd 2610 . . . . . . . . 9 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ 𝑧𝐼) → (𝑖𝑧) = (𝑖𝑧))
138113, 117, 77, 77, 55, 136, 137offval 6779 . . . . . . . 8 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → ((𝑥𝐼 ↦ (𝑘 · (𝑔𝑥))) ∘𝑓 · 𝑖) = (𝑧𝐼 ↦ (((𝑥𝐼 ↦ (𝑘 · (𝑔𝑥)))‘𝑧) · (𝑖𝑧))))
139138funeqd 5811 . . . . . . 7 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → (Fun ((𝑥𝐼 ↦ (𝑘 · (𝑔𝑥))) ∘𝑓 · 𝑖) ↔ Fun (𝑧𝐼 ↦ (((𝑥𝐼 ↦ (𝑘 · (𝑔𝑥)))‘𝑧) · (𝑖𝑧)))))
140135, 139mpbiri 246 . . . . . 6 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → Fun ((𝑥𝐼 ↦ (𝑘 · (𝑔𝑥))) ∘𝑓 · 𝑖))
141 simp3 1055 . . . . . . . . 9 ((𝑔𝑉𝑉𝑖𝑉) → 𝑖𝑉)
14213, 141anim12i 587 . . . . . . . 8 ((𝜑 ∧ (𝑔𝑉𝑉𝑖𝑉)) → (𝐼𝑊𝑖𝑉))
1431423adant2 1072 . . . . . . 7 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → (𝐼𝑊𝑖𝑉))
14414, 24, 1frlmbasfsupp 19863 . . . . . . 7 ((𝐼𝑊𝑖𝑉) → 𝑖 finSupp 0 )
145143, 144syl 17 . . . . . 6 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → 𝑖 finSupp 0 )
14617, 24ring0cl 18338 . . . . . . . 8 (𝑅 ∈ Ring → 0𝐵)
14778, 146syl 17 . . . . . . 7 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → 0𝐵)
14817, 20, 24ringrz 18357 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑦𝐵) → (𝑦 · 0 ) = 0 )
14978, 148sylan 486 . . . . . . 7 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ 𝑦𝐵) → (𝑦 · 0 ) = 0 )
15077, 147, 111, 90, 149suppofss2d 7197 . . . . . 6 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → (((𝑥𝐼 ↦ (𝑘 · (𝑔𝑥))) ∘𝑓 · 𝑖) supp 0 ) ⊆ (𝑖 supp 0 ))
151 fsuppsssupp 8151 . . . . . 6 (((((𝑥𝐼 ↦ (𝑘 · (𝑔𝑥))) ∘𝑓 · 𝑖) ∈ V ∧ Fun ((𝑥𝐼 ↦ (𝑘 · (𝑔𝑥))) ∘𝑓 · 𝑖)) ∧ (𝑖 finSupp 0 ∧ (((𝑥𝐼 ↦ (𝑘 · (𝑔𝑥))) ∘𝑓 · 𝑖) supp 0 ) ⊆ (𝑖 supp 0 ))) → ((𝑥𝐼 ↦ (𝑘 · (𝑔𝑥))) ∘𝑓 · 𝑖) finSupp 0 )
152134, 140, 145, 150, 151syl22anc 1318 . . . . 5 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → ((𝑥𝐼 ↦ (𝑘 · (𝑔𝑥))) ∘𝑓 · 𝑖) finSupp 0 )
153132, 152eqbrtrrd 4601 . . . 4 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → (𝑥𝐼 ↦ (𝑘 · ((𝑔𝑥) · (𝑖𝑥)))) finSupp 0 )
154 simp1 1053 . . . . 5 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → 𝜑)
155 eleq1 2675 . . . . . . . . 9 (𝑔 = → (𝑔𝑉𝑉))
156 id 22 . . . . . . . . . . 11 (𝑔 = 𝑔 = )
157156, 156oveq12d 6545 . . . . . . . . . 10 (𝑔 = → (𝑔 , 𝑔) = ( , ))
158157eqeq1d 2611 . . . . . . . . 9 (𝑔 = → ((𝑔 , 𝑔) = 0 ↔ ( , ) = 0 ))
159155, 1583anbi23d 1393 . . . . . . . 8 (𝑔 = → ((𝜑𝑔𝑉 ∧ (𝑔 , 𝑔) = 0 ) ↔ (𝜑𝑉 ∧ ( , ) = 0 )))
160 eqeq1 2613 . . . . . . . 8 (𝑔 = → (𝑔 = 𝑂 = 𝑂))
161159, 160imbi12d 332 . . . . . . 7 (𝑔 = → (((𝜑𝑔𝑉 ∧ (𝑔 , 𝑔) = 0 ) → 𝑔 = 𝑂) ↔ ((𝜑𝑉 ∧ ( , ) = 0 ) → = 𝑂)))
162161, 71chvarv 2250 . . . . . 6 ((𝜑𝑉 ∧ ( , ) = 0 ) → = 𝑂)
16314, 17, 20, 1, 5, 7, 24, 22, 9, 162, 35, 13frlmphllem 19880 . . . . 5 ((𝜑𝑉𝑖𝑉) → (𝑥𝐼 ↦ ((𝑥) · (𝑖𝑥))) finSupp 0 )
164154, 96, 86, 163syl3anc 1317 . . . 4 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → (𝑥𝐼 ↦ ((𝑥) · (𝑖𝑥))) finSupp 0 )
16517, 24, 75, 76, 77, 95, 101, 102, 103, 153, 164gsummptfsadd 18093 . . 3 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → (𝑅 Σg (𝑥𝐼 ↦ ((𝑘 · ((𝑔𝑥) · (𝑖𝑥)))(+g𝑅)((𝑥) · (𝑖𝑥))))) = ((𝑅 Σg (𝑥𝐼 ↦ (𝑘 · ((𝑔𝑥) · (𝑖𝑥)))))(+g𝑅)(𝑅 Σg (𝑥𝐼 ↦ ((𝑥) · (𝑖𝑥))))))
16614, 17, 20frlmip 19878 . . . . . . . . 9 ((𝐼𝑊𝑅 ∈ DivRing) → (𝑔 ∈ (𝐵𝑚 𝐼), ∈ (𝐵𝑚 𝐼) ↦ (𝑅 Σg (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑥))))) = (·𝑖𝑌))
16713, 12, 166syl2anc 690 . . . . . . . 8 (𝜑 → (𝑔 ∈ (𝐵𝑚 𝐼), ∈ (𝐵𝑚 𝐼) ↦ (𝑅 Σg (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑥))))) = (·𝑖𝑌))
168167, 5syl6reqr 2662 . . . . . . 7 (𝜑, = (𝑔 ∈ (𝐵𝑚 𝐼), ∈ (𝐵𝑚 𝐼) ↦ (𝑅 Σg (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑥))))))
169 fveq1 6087 . . . . . . . . . . 11 (𝑒 = 𝑔 → (𝑒𝑥) = (𝑔𝑥))
170169oveq1d 6542 . . . . . . . . . 10 (𝑒 = 𝑔 → ((𝑒𝑥) · (𝑓𝑥)) = ((𝑔𝑥) · (𝑓𝑥)))
171170mpteq2dv 4667 . . . . . . . . 9 (𝑒 = 𝑔 → (𝑥𝐼 ↦ ((𝑒𝑥) · (𝑓𝑥))) = (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑓𝑥))))
172171oveq2d 6543 . . . . . . . 8 (𝑒 = 𝑔 → (𝑅 Σg (𝑥𝐼 ↦ ((𝑒𝑥) · (𝑓𝑥)))) = (𝑅 Σg (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑓𝑥)))))
173 fveq1 6087 . . . . . . . . . . 11 (𝑓 = → (𝑓𝑥) = (𝑥))
174173oveq2d 6543 . . . . . . . . . 10 (𝑓 = → ((𝑔𝑥) · (𝑓𝑥)) = ((𝑔𝑥) · (𝑥)))
175174mpteq2dv 4667 . . . . . . . . 9 (𝑓 = → (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑓𝑥))) = (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑥))))
176175oveq2d 6543 . . . . . . . 8 (𝑓 = → (𝑅 Σg (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑓𝑥)))) = (𝑅 Σg (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑥)))))
177172, 176cbvmpt2v 6611 . . . . . . 7 (𝑒 ∈ (𝐵𝑚 𝐼), 𝑓 ∈ (𝐵𝑚 𝐼) ↦ (𝑅 Σg (𝑥𝐼 ↦ ((𝑒𝑥) · (𝑓𝑥))))) = (𝑔 ∈ (𝐵𝑚 𝐼), ∈ (𝐵𝑚 𝐼) ↦ (𝑅 Σg (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑥)))))
178168, 177syl6eqr 2661 . . . . . 6 (𝜑, = (𝑒 ∈ (𝐵𝑚 𝐼), 𝑓 ∈ (𝐵𝑚 𝐼) ↦ (𝑅 Σg (𝑥𝐼 ↦ ((𝑒𝑥) · (𝑓𝑥))))))
1791783ad2ant1 1074 . . . . 5 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → , = (𝑒 ∈ (𝐵𝑚 𝐼), 𝑓 ∈ (𝐵𝑚 𝐼) ↦ (𝑅 Σg (𝑥𝐼 ↦ ((𝑒𝑥) · (𝑓𝑥))))))
180 simprl 789 . . . . . . . . 9 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ (𝑒 = ((𝑘( ·𝑠𝑌)𝑔)(+g𝑌)) ∧ 𝑓 = 𝑖)) → 𝑒 = ((𝑘( ·𝑠𝑌)𝑔)(+g𝑌)))
181180fveq1d 6090 . . . . . . . 8 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ (𝑒 = ((𝑘( ·𝑠𝑌)𝑔)(+g𝑌)) ∧ 𝑓 = 𝑖)) → (𝑒𝑥) = (((𝑘( ·𝑠𝑌)𝑔)(+g𝑌))‘𝑥))
182 simprr 791 . . . . . . . . 9 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ (𝑒 = ((𝑘( ·𝑠𝑌)𝑔)(+g𝑌)) ∧ 𝑓 = 𝑖)) → 𝑓 = 𝑖)
183182fveq1d 6090 . . . . . . . 8 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ (𝑒 = ((𝑘( ·𝑠𝑌)𝑔)(+g𝑌)) ∧ 𝑓 = 𝑖)) → (𝑓𝑥) = (𝑖𝑥))
184181, 183oveq12d 6545 . . . . . . 7 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ (𝑒 = ((𝑘( ·𝑠𝑌)𝑔)(+g𝑌)) ∧ 𝑓 = 𝑖)) → ((𝑒𝑥) · (𝑓𝑥)) = ((((𝑘( ·𝑠𝑌)𝑔)(+g𝑌))‘𝑥) · (𝑖𝑥)))
185184mpteq2dv 4667 . . . . . 6 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ (𝑒 = ((𝑘( ·𝑠𝑌)𝑔)(+g𝑌)) ∧ 𝑓 = 𝑖)) → (𝑥𝐼 ↦ ((𝑒𝑥) · (𝑓𝑥))) = (𝑥𝐼 ↦ ((((𝑘( ·𝑠𝑌)𝑔)(+g𝑌))‘𝑥) · (𝑖𝑥))))
186185oveq2d 6543 . . . . 5 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ (𝑒 = ((𝑘( ·𝑠𝑌)𝑔)(+g𝑌)) ∧ 𝑓 = 𝑖)) → (𝑅 Σg (𝑥𝐼 ↦ ((𝑒𝑥) · (𝑓𝑥)))) = (𝑅 Σg (𝑥𝐼 ↦ ((((𝑘( ·𝑠𝑌)𝑔)(+g𝑌))‘𝑥) · (𝑖𝑥)))))
187293ad2ant1 1074 . . . . . . 7 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → 𝑌 ∈ LMod)
188163ad2ant1 1074 . . . . . . . . . . 11 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → 𝑅 = (Scalar‘𝑌))
189188fveq2d 6092 . . . . . . . . . 10 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → (Base‘𝑅) = (Base‘(Scalar‘𝑌)))
19017, 189syl5eq 2655 . . . . . . . . 9 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → 𝐵 = (Base‘(Scalar‘𝑌)))
19180, 190eleqtrd 2689 . . . . . . . 8 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → 𝑘 ∈ (Base‘(Scalar‘𝑌)))
192 eqid 2609 . . . . . . . . 9 ( ·𝑠𝑌) = ( ·𝑠𝑌)
193 eqid 2609 . . . . . . . . 9 (Base‘(Scalar‘𝑌)) = (Base‘(Scalar‘𝑌))
1941, 31, 192, 193lmodvscl 18649 . . . . . . . 8 ((𝑌 ∈ LMod ∧ 𝑘 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑔𝑉) → (𝑘( ·𝑠𝑌)𝑔) ∈ 𝑉)
195187, 191, 82, 194syl3anc 1317 . . . . . . 7 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → (𝑘( ·𝑠𝑌)𝑔) ∈ 𝑉)
196 eqid 2609 . . . . . . . 8 (+g𝑌) = (+g𝑌)
1971, 196lmodvacl 18646 . . . . . . 7 ((𝑌 ∈ LMod ∧ (𝑘( ·𝑠𝑌)𝑔) ∈ 𝑉𝑉) → ((𝑘( ·𝑠𝑌)𝑔)(+g𝑌)) ∈ 𝑉)
198187, 195, 96, 197syl3anc 1317 . . . . . 6 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → ((𝑘( ·𝑠𝑌)𝑔)(+g𝑌)) ∈ 𝑉)
19914, 17, 1frlmbasmap 19864 . . . . . 6 ((𝐼𝑊 ∧ ((𝑘( ·𝑠𝑌)𝑔)(+g𝑌)) ∈ 𝑉) → ((𝑘( ·𝑠𝑌)𝑔)(+g𝑌)) ∈ (𝐵𝑚 𝐼))
20077, 198, 199syl2anc 690 . . . . 5 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → ((𝑘( ·𝑠𝑌)𝑔)(+g𝑌)) ∈ (𝐵𝑚 𝐼))
201 ovex 6555 . . . . . 6 (𝑅 Σg (𝑥𝐼 ↦ ((((𝑘( ·𝑠𝑌)𝑔)(+g𝑌))‘𝑥) · (𝑖𝑥)))) ∈ V
202201a1i 11 . . . . 5 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → (𝑅 Σg (𝑥𝐼 ↦ ((((𝑘( ·𝑠𝑌)𝑔)(+g𝑌))‘𝑥) · (𝑖𝑥)))) ∈ V)
203179, 186, 200, 88, 202ovmpt2d 6664 . . . 4 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → (((𝑘( ·𝑠𝑌)𝑔)(+g𝑌)) , 𝑖) = (𝑅 Σg (𝑥𝐼 ↦ ((((𝑘( ·𝑠𝑌)𝑔)(+g𝑌))‘𝑥) · (𝑖𝑥)))))
20414, 1, 78, 77, 195, 96, 75, 196frlmplusgval 19868 . . . . . . . . . 10 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → ((𝑘( ·𝑠𝑌)𝑔)(+g𝑌)) = ((𝑘( ·𝑠𝑌)𝑔) ∘𝑓 (+g𝑅)))
20514, 17, 1frlmbasmap 19864 . . . . . . . . . . . . 13 ((𝐼𝑊 ∧ (𝑘( ·𝑠𝑌)𝑔) ∈ 𝑉) → (𝑘( ·𝑠𝑌)𝑔) ∈ (𝐵𝑚 𝐼))
20677, 195, 205syl2anc 690 . . . . . . . . . . . 12 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → (𝑘( ·𝑠𝑌)𝑔) ∈ (𝐵𝑚 𝐼))
207 elmapi 7742 . . . . . . . . . . . 12 ((𝑘( ·𝑠𝑌)𝑔) ∈ (𝐵𝑚 𝐼) → (𝑘( ·𝑠𝑌)𝑔):𝐼𝐵)
208 ffn 5944 . . . . . . . . . . . 12 ((𝑘( ·𝑠𝑌)𝑔):𝐼𝐵 → (𝑘( ·𝑠𝑌)𝑔) Fn 𝐼)
209206, 207, 2083syl 18 . . . . . . . . . . 11 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → (𝑘( ·𝑠𝑌)𝑔) Fn 𝐼)
21098, 53syl 17 . . . . . . . . . . 11 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → Fn 𝐼)
21177adantr 479 . . . . . . . . . . . 12 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ 𝑥𝐼) → 𝐼𝑊)
21282adantr 479 . . . . . . . . . . . 12 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ 𝑥𝐼) → 𝑔𝑉)
21314, 1, 17, 211, 81, 212, 122, 192, 20frlmvscaval 19871 . . . . . . . . . . 11 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ 𝑥𝐼) → ((𝑘( ·𝑠𝑌)𝑔)‘𝑥) = (𝑘 · (𝑔𝑥)))
214 eqidd 2610 . . . . . . . . . . 11 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ 𝑥𝐼) → (𝑥) = (𝑥))
215209, 210, 77, 77, 55, 213, 214offval 6779 . . . . . . . . . 10 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → ((𝑘( ·𝑠𝑌)𝑔) ∘𝑓 (+g𝑅)) = (𝑥𝐼 ↦ ((𝑘 · (𝑔𝑥))(+g𝑅)(𝑥))))
216204, 215eqtrd 2643 . . . . . . . . 9 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → ((𝑘( ·𝑠𝑌)𝑔)(+g𝑌)) = (𝑥𝐼 ↦ ((𝑘 · (𝑔𝑥))(+g𝑅)(𝑥))))
217 ovex 6555 . . . . . . . . . 10 ((𝑘 · (𝑔𝑥))(+g𝑅)(𝑥)) ∈ V
218217a1i 11 . . . . . . . . 9 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ 𝑥𝐼) → ((𝑘 · (𝑔𝑥))(+g𝑅)(𝑥)) ∈ V)
219216, 218fvmpt2d 6187 . . . . . . . 8 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ 𝑥𝐼) → (((𝑘( ·𝑠𝑌)𝑔)(+g𝑌))‘𝑥) = ((𝑘 · (𝑔𝑥))(+g𝑅)(𝑥)))
220219oveq1d 6542 . . . . . . 7 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ 𝑥𝐼) → ((((𝑘( ·𝑠𝑌)𝑔)(+g𝑌))‘𝑥) · (𝑖𝑥)) = (((𝑘 · (𝑔𝑥))(+g𝑅)(𝑥)) · (𝑖𝑥)))
22117, 75, 20ringdir 18336 . . . . . . . 8 ((𝑅 ∈ Ring ∧ ((𝑘 · (𝑔𝑥)) ∈ 𝐵 ∧ (𝑥) ∈ 𝐵 ∧ (𝑖𝑥) ∈ 𝐵)) → (((𝑘 · (𝑔𝑥))(+g𝑅)(𝑥)) · (𝑖𝑥)) = (((𝑘 · (𝑔𝑥)) · (𝑖𝑥))(+g𝑅)((𝑥) · (𝑖𝑥))))
22279, 109, 99, 91, 221syl13anc 1319 . . . . . . 7 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ 𝑥𝐼) → (((𝑘 · (𝑔𝑥))(+g𝑅)(𝑥)) · (𝑖𝑥)) = (((𝑘 · (𝑔𝑥)) · (𝑖𝑥))(+g𝑅)((𝑥) · (𝑖𝑥))))
223129oveq1d 6542 . . . . . . 7 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ 𝑥𝐼) → (((𝑘 · (𝑔𝑥)) · (𝑖𝑥))(+g𝑅)((𝑥) · (𝑖𝑥))) = ((𝑘 · ((𝑔𝑥) · (𝑖𝑥)))(+g𝑅)((𝑥) · (𝑖𝑥))))
224220, 222, 2233eqtrd 2647 . . . . . 6 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ 𝑥𝐼) → ((((𝑘( ·𝑠𝑌)𝑔)(+g𝑌))‘𝑥) · (𝑖𝑥)) = ((𝑘 · ((𝑔𝑥) · (𝑖𝑥)))(+g𝑅)((𝑥) · (𝑖𝑥))))
225224mpteq2dva 4666 . . . . 5 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → (𝑥𝐼 ↦ ((((𝑘( ·𝑠𝑌)𝑔)(+g𝑌))‘𝑥) · (𝑖𝑥))) = (𝑥𝐼 ↦ ((𝑘 · ((𝑔𝑥) · (𝑖𝑥)))(+g𝑅)((𝑥) · (𝑖𝑥)))))
226225oveq2d 6543 . . . 4 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → (𝑅 Σg (𝑥𝐼 ↦ ((((𝑘( ·𝑠𝑌)𝑔)(+g𝑌))‘𝑥) · (𝑖𝑥)))) = (𝑅 Σg (𝑥𝐼 ↦ ((𝑘 · ((𝑔𝑥) · (𝑖𝑥)))(+g𝑅)((𝑥) · (𝑖𝑥))))))
227203, 226eqtrd 2643 . . 3 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → (((𝑘( ·𝑠𝑌)𝑔)(+g𝑌)) , 𝑖) = (𝑅 Σg (𝑥𝐼 ↦ ((𝑘 · ((𝑔𝑥) · (𝑖𝑥)))(+g𝑅)((𝑥) · (𝑖𝑥))))))
228 simprl 789 . . . . . . . . . . 11 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ (𝑒 = 𝑔𝑓 = 𝑖)) → 𝑒 = 𝑔)
229228fveq1d 6090 . . . . . . . . . 10 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ (𝑒 = 𝑔𝑓 = 𝑖)) → (𝑒𝑥) = (𝑔𝑥))
230 simprr 791 . . . . . . . . . . 11 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ (𝑒 = 𝑔𝑓 = 𝑖)) → 𝑓 = 𝑖)
231230fveq1d 6090 . . . . . . . . . 10 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ (𝑒 = 𝑔𝑓 = 𝑖)) → (𝑓𝑥) = (𝑖𝑥))
232229, 231oveq12d 6545 . . . . . . . . 9 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ (𝑒 = 𝑔𝑓 = 𝑖)) → ((𝑒𝑥) · (𝑓𝑥)) = ((𝑔𝑥) · (𝑖𝑥)))
233232mpteq2dv 4667 . . . . . . . 8 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ (𝑒 = 𝑔𝑓 = 𝑖)) → (𝑥𝐼 ↦ ((𝑒𝑥) · (𝑓𝑥))) = (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑖𝑥))))
234233oveq2d 6543 . . . . . . 7 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ (𝑒 = 𝑔𝑓 = 𝑖)) → (𝑅 Σg (𝑥𝐼 ↦ ((𝑒𝑥) · (𝑓𝑥)))) = (𝑅 Σg (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑖𝑥)))))
235 ovex 6555 . . . . . . . 8 (𝑅 Σg (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑖𝑥)))) ∈ V
236235a1i 11 . . . . . . 7 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → (𝑅 Σg (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑖𝑥)))) ∈ V)
237179, 234, 83, 88, 236ovmpt2d 6664 . . . . . 6 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → (𝑔 , 𝑖) = (𝑅 Σg (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑖𝑥)))))
238237oveq2d 6543 . . . . 5 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → (𝑘 · (𝑔 , 𝑖)) = (𝑘 · (𝑅 Σg (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑖𝑥))))))
23914, 17, 20, 1, 5, 7, 24, 22, 9, 71, 35, 13frlmphllem 19880 . . . . . . 7 ((𝜑𝑔𝑉𝑖𝑉) → (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑖𝑥))) finSupp 0 )
240154, 82, 86, 239syl3anc 1317 . . . . . 6 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑖𝑥))) finSupp 0 )
24117, 24, 75, 20, 78, 77, 80, 93, 240gsummulc2 18376 . . . . 5 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → (𝑅 Σg (𝑥𝐼 ↦ (𝑘 · ((𝑔𝑥) · (𝑖𝑥))))) = (𝑘 · (𝑅 Σg (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑖𝑥))))))
242238, 241eqtr4d 2646 . . . 4 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → (𝑘 · (𝑔 , 𝑖)) = (𝑅 Σg (𝑥𝐼 ↦ (𝑘 · ((𝑔𝑥) · (𝑖𝑥))))))
243 simprl 789 . . . . . . . . 9 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ (𝑒 = 𝑓 = 𝑖)) → 𝑒 = )
244243fveq1d 6090 . . . . . . . 8 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ (𝑒 = 𝑓 = 𝑖)) → (𝑒𝑥) = (𝑥))
245 simprr 791 . . . . . . . . 9 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ (𝑒 = 𝑓 = 𝑖)) → 𝑓 = 𝑖)
246245fveq1d 6090 . . . . . . . 8 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ (𝑒 = 𝑓 = 𝑖)) → (𝑓𝑥) = (𝑖𝑥))
247244, 246oveq12d 6545 . . . . . . 7 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ (𝑒 = 𝑓 = 𝑖)) → ((𝑒𝑥) · (𝑓𝑥)) = ((𝑥) · (𝑖𝑥)))
248247mpteq2dv 4667 . . . . . 6 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ (𝑒 = 𝑓 = 𝑖)) → (𝑥𝐼 ↦ ((𝑒𝑥) · (𝑓𝑥))) = (𝑥𝐼 ↦ ((𝑥) · (𝑖𝑥))))
249248oveq2d 6543 . . . . 5 (((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) ∧ (𝑒 = 𝑓 = 𝑖)) → (𝑅 Σg (𝑥𝐼 ↦ ((𝑒𝑥) · (𝑓𝑥)))) = (𝑅 Σg (𝑥𝐼 ↦ ((𝑥) · (𝑖𝑥)))))
250 ovex 6555 . . . . . 6 (𝑅 Σg (𝑥𝐼 ↦ ((𝑥) · (𝑖𝑥)))) ∈ V
251250a1i 11 . . . . 5 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → (𝑅 Σg (𝑥𝐼 ↦ ((𝑥) · (𝑖𝑥)))) ∈ V)
252179, 249, 97, 88, 251ovmpt2d 6664 . . . 4 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → ( , 𝑖) = (𝑅 Σg (𝑥𝐼 ↦ ((𝑥) · (𝑖𝑥)))))
253242, 252oveq12d 6545 . . 3 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → ((𝑘 · (𝑔 , 𝑖))(+g𝑅)( , 𝑖)) = ((𝑅 Σg (𝑥𝐼 ↦ (𝑘 · ((𝑔𝑥) · (𝑖𝑥)))))(+g𝑅)(𝑅 Σg (𝑥𝐼 ↦ ((𝑥) · (𝑖𝑥))))))
254165, 227, 2533eqtr4d 2653 . 2 ((𝜑𝑘𝐵 ∧ (𝑔𝑉𝑉𝑖𝑉)) → (((𝑘( ·𝑠𝑌)𝑔)(+g𝑌)) , 𝑖) = ((𝑘 · (𝑔 , 𝑖))(+g𝑅)( , 𝑖)))
255343ad2ant1 1074 . . . . . . 7 ((𝜑𝑔𝑉𝑉) → 𝑅 ∈ CRing)
256255adantr 479 . . . . . 6 (((𝜑𝑔𝑉𝑉) ∧ 𝑥𝐼) → 𝑅 ∈ CRing)
25717, 20crngcom 18331 . . . . . 6 ((𝑅 ∈ CRing ∧ (𝑥) ∈ 𝐵 ∧ (𝑔𝑥) ∈ 𝐵) → ((𝑥) · (𝑔𝑥)) = ((𝑔𝑥) · (𝑥)))
258256, 66, 65, 257syl3anc 1317 . . . . 5 (((𝜑𝑔𝑉𝑉) ∧ 𝑥𝐼) → ((𝑥) · (𝑔𝑥)) = ((𝑔𝑥) · (𝑥)))
259258mpteq2dva 4666 . . . 4 ((𝜑𝑔𝑉𝑉) → (𝑥𝐼 ↦ ((𝑥) · (𝑔𝑥))) = (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑥))))
260259oveq2d 6543 . . 3 ((𝜑𝑔𝑉𝑉) → (𝑅 Σg (𝑥𝐼 ↦ ((𝑥) · (𝑔𝑥)))) = (𝑅 Σg (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑥)))))
2611783ad2ant1 1074 . . . 4 ((𝜑𝑔𝑉𝑉) → , = (𝑒 ∈ (𝐵𝑚 𝐼), 𝑓 ∈ (𝐵𝑚 𝐼) ↦ (𝑅 Σg (𝑥𝐼 ↦ ((𝑒𝑥) · (𝑓𝑥))))))
262 simprl 789 . . . . . . . 8 (((𝜑𝑔𝑉𝑉) ∧ (𝑒 = 𝑓 = 𝑔)) → 𝑒 = )
263262fveq1d 6090 . . . . . . 7 (((𝜑𝑔𝑉𝑉) ∧ (𝑒 = 𝑓 = 𝑔)) → (𝑒𝑥) = (𝑥))
264 simprr 791 . . . . . . . 8 (((𝜑𝑔𝑉𝑉) ∧ (𝑒 = 𝑓 = 𝑔)) → 𝑓 = 𝑔)
265264fveq1d 6090 . . . . . . 7 (((𝜑𝑔𝑉𝑉) ∧ (𝑒 = 𝑓 = 𝑔)) → (𝑓𝑥) = (𝑔𝑥))
266263, 265oveq12d 6545 . . . . . 6 (((𝜑𝑔𝑉𝑉) ∧ (𝑒 = 𝑓 = 𝑔)) → ((𝑒𝑥) · (𝑓𝑥)) = ((𝑥) · (𝑔𝑥)))
267266mpteq2dv 4667 . . . . 5 (((𝜑𝑔𝑉𝑉) ∧ (𝑒 = 𝑓 = 𝑔)) → (𝑥𝐼 ↦ ((𝑒𝑥) · (𝑓𝑥))) = (𝑥𝐼 ↦ ((𝑥) · (𝑔𝑥))))
268267oveq2d 6543 . . . 4 (((𝜑𝑔𝑉𝑉) ∧ (𝑒 = 𝑓 = 𝑔)) → (𝑅 Σg (𝑥𝐼 ↦ ((𝑒𝑥) · (𝑓𝑥)))) = (𝑅 Σg (𝑥𝐼 ↦ ((𝑥) · (𝑔𝑥)))))
269 ovex 6555 . . . . 5 (𝑅 Σg (𝑥𝐼 ↦ ((𝑥) · (𝑔𝑥)))) ∈ V
270269a1i 11 . . . 4 ((𝜑𝑔𝑉𝑉) → (𝑅 Σg (𝑥𝐼 ↦ ((𝑥) · (𝑔𝑥)))) ∈ V)
271261, 268, 50, 44, 270ovmpt2d 6664 . . 3 ((𝜑𝑔𝑉𝑉) → ( , 𝑔) = (𝑅 Σg (𝑥𝐼 ↦ ((𝑥) · (𝑔𝑥)))))
27235ralrimiva 2948 . . . . . 6 (𝜑 → ∀𝑥𝐵 ( 𝑥) = 𝑥)
2732723ad2ant1 1074 . . . . 5 ((𝜑𝑔𝑉𝑉) → ∀𝑥𝐵 ( 𝑥) = 𝑥)
274 fveq2 6088 . . . . . . 7 (𝑥 = (𝑔 , ) → ( 𝑥) = ( ‘(𝑔 , )))
275 id 22 . . . . . . 7 (𝑥 = (𝑔 , ) → 𝑥 = (𝑔 , ))
276274, 275eqeq12d 2624 . . . . . 6 (𝑥 = (𝑔 , ) → (( 𝑥) = 𝑥 ↔ ( ‘(𝑔 , )) = (𝑔 , )))
277276rspcv 3277 . . . . 5 ((𝑔 , ) ∈ 𝐵 → (∀𝑥𝐵 ( 𝑥) = 𝑥 → ( ‘(𝑔 , )) = (𝑔 , )))
27874, 273, 277sylc 62 . . . 4 ((𝜑𝑔𝑉𝑉) → ( ‘(𝑔 , )) = (𝑔 , ))
279278, 60eqtrd 2643 . . 3 ((𝜑𝑔𝑉𝑉) → ( ‘(𝑔 , )) = (𝑅 Σg (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑥)))))
280260, 271, 2793eqtr4rd 2654 . 2 ((𝜑𝑔𝑉𝑉) → ( ‘(𝑔 , )) = ( , 𝑔))
2812, 3, 4, 6, 8, 16, 18, 19, 21, 23, 25, 33, 36, 74, 254, 71, 280isphld 19763 1 (𝜑𝑌 ∈ PreHil)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  w3a 1030   = wceq 1474  wcel 1976  wral 2895  Vcvv 3172  wss 3539   class class class wbr 4577  cmpt 4637  Fun wfun 5784   Fn wfn 5785  wf 5786  cfv 5790  (class class class)co 6527  cmpt2 6529  𝑓 cof 6770   supp csupp 7159  𝑚 cmap 7721   finSupp cfsupp 8135  Basecbs 15641  +gcplusg 15714  .rcmulr 15715  *𝑟cstv 15716  Scalarcsca 15717   ·𝑠 cvsca 15718  ·𝑖cip 15719  0gc0g 15869   Σg cgsu 15870  CMndccmn 17962  Ringcrg 18316  CRingccrg 18317  DivRingcdr 18516  Fieldcfield 18517  LModclmod 18632  LVecclvec 18869  PreHilcphl 19733   freeLMod cfrlm 19851
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824  ax-cnex 9848  ax-resscn 9849  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-addrcl 9853  ax-mulcl 9854  ax-mulrcl 9855  ax-mulcom 9856  ax-addass 9857  ax-mulass 9858  ax-distr 9859  ax-i2m1 9860  ax-1ne0 9861  ax-1rid 9862  ax-rnegex 9863  ax-rrecex 9864  ax-cnre 9865  ax-pre-lttri 9866  ax-pre-lttrn 9867  ax-pre-ltadd 9868  ax-pre-mulgt0 9869
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-int 4405  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-se 4988  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-isom 5799  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-of 6772  df-om 6935  df-1st 7036  df-2nd 7037  df-supp 7160  df-tpos 7216  df-wrecs 7271  df-recs 7332  df-rdg 7370  df-1o 7424  df-oadd 7428  df-er 7606  df-map 7723  df-ixp 7772  df-en 7819  df-dom 7820  df-sdom 7821  df-fin 7822  df-fsupp 8136  df-sup 8208  df-oi 8275  df-card 8625  df-pnf 9932  df-mnf 9933  df-xr 9934  df-ltxr 9935  df-le 9936  df-sub 10119  df-neg 10120  df-nn 10868  df-2 10926  df-3 10927  df-4 10928  df-5 10929  df-6 10930  df-7 10931  df-8 10932  df-9 10933  df-n0 11140  df-z 11211  df-dec 11326  df-uz 11520  df-fz 12153  df-fzo 12290  df-seq 12619  df-hash 12935  df-struct 15643  df-ndx 15644  df-slot 15645  df-base 15646  df-sets 15647  df-ress 15648  df-plusg 15727  df-mulr 15728  df-sca 15730  df-vsca 15731  df-ip 15732  df-tset 15733  df-ple 15734  df-ds 15737  df-hom 15739  df-cco 15740  df-0g 15871  df-gsum 15872  df-prds 15877  df-pws 15879  df-mgm 17011  df-sgrp 17053  df-mnd 17064  df-mhm 17104  df-submnd 17105  df-grp 17194  df-minusg 17195  df-sbg 17196  df-subg 17360  df-ghm 17427  df-cntz 17519  df-cmn 17964  df-abl 17965  df-mgp 18259  df-ur 18271  df-ring 18318  df-cring 18319  df-oppr 18392  df-rnghom 18484  df-drng 18518  df-field 18519  df-subrg 18547  df-staf 18614  df-srng 18615  df-lmod 18634  df-lss 18700  df-lmhm 18789  df-lvec 18870  df-sra 18939  df-rgmod 18940  df-phl 19735  df-dsmm 19837  df-frlm 19852
This theorem is referenced by:  rrxcph  22905
  Copyright terms: Public domain W3C validator