MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frlmsca Structured version   Visualization version   GIF version

Theorem frlmsca 19858
Description: The ring of scalars of a free module. (Contributed by Stefan O'Rear, 1-Feb-2015.)
Hypothesis
Ref Expression
frlmval.f 𝐹 = (𝑅 freeLMod 𝐼)
Assertion
Ref Expression
frlmsca ((𝑅𝑉𝐼𝑊) → 𝑅 = (Scalar‘𝐹))

Proof of Theorem frlmsca
StepHypRef Expression
1 fvex 6098 . . . . 5 (ringLMod‘𝑅) ∈ V
2 eqid 2609 . . . . . 6 ((ringLMod‘𝑅) ↑s 𝐼) = ((ringLMod‘𝑅) ↑s 𝐼)
3 eqid 2609 . . . . . 6 (Scalar‘(ringLMod‘𝑅)) = (Scalar‘(ringLMod‘𝑅))
42, 3pwssca 15925 . . . . 5 (((ringLMod‘𝑅) ∈ V ∧ 𝐼𝑊) → (Scalar‘(ringLMod‘𝑅)) = (Scalar‘((ringLMod‘𝑅) ↑s 𝐼)))
51, 4mpan 701 . . . 4 (𝐼𝑊 → (Scalar‘(ringLMod‘𝑅)) = (Scalar‘((ringLMod‘𝑅) ↑s 𝐼)))
65adantl 480 . . 3 ((𝑅𝑉𝐼𝑊) → (Scalar‘(ringLMod‘𝑅)) = (Scalar‘((ringLMod‘𝑅) ↑s 𝐼)))
7 fvex 6098 . . . 4 (Base‘𝐹) ∈ V
8 eqid 2609 . . . . 5 (((ringLMod‘𝑅) ↑s 𝐼) ↾s (Base‘𝐹)) = (((ringLMod‘𝑅) ↑s 𝐼) ↾s (Base‘𝐹))
9 eqid 2609 . . . . 5 (Scalar‘((ringLMod‘𝑅) ↑s 𝐼)) = (Scalar‘((ringLMod‘𝑅) ↑s 𝐼))
108, 9resssca 15800 . . . 4 ((Base‘𝐹) ∈ V → (Scalar‘((ringLMod‘𝑅) ↑s 𝐼)) = (Scalar‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s (Base‘𝐹))))
117, 10ax-mp 5 . . 3 (Scalar‘((ringLMod‘𝑅) ↑s 𝐼)) = (Scalar‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s (Base‘𝐹)))
126, 11syl6eq 2659 . 2 ((𝑅𝑉𝐼𝑊) → (Scalar‘(ringLMod‘𝑅)) = (Scalar‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s (Base‘𝐹))))
13 rlmsca 18967 . . 3 (𝑅𝑉𝑅 = (Scalar‘(ringLMod‘𝑅)))
1413adantr 479 . 2 ((𝑅𝑉𝐼𝑊) → 𝑅 = (Scalar‘(ringLMod‘𝑅)))
15 frlmval.f . . . 4 𝐹 = (𝑅 freeLMod 𝐼)
16 eqid 2609 . . . 4 (Base‘𝐹) = (Base‘𝐹)
1715, 16frlmpws 19855 . . 3 ((𝑅𝑉𝐼𝑊) → 𝐹 = (((ringLMod‘𝑅) ↑s 𝐼) ↾s (Base‘𝐹)))
1817fveq2d 6092 . 2 ((𝑅𝑉𝐼𝑊) → (Scalar‘𝐹) = (Scalar‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s (Base‘𝐹))))
1912, 14, 183eqtr4d 2653 1 ((𝑅𝑉𝐼𝑊) → 𝑅 = (Scalar‘𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1474  wcel 1976  Vcvv 3172  cfv 5790  (class class class)co 6527  Basecbs 15641  s cress 15642  Scalarcsca 15717  s cpws 15876  ringLModcrglmod 18936   freeLMod cfrlm 19851
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2232  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824  ax-cnex 9848  ax-resscn 9849  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-addrcl 9853  ax-mulcl 9854  ax-mulrcl 9855  ax-mulcom 9856  ax-addass 9857  ax-mulass 9858  ax-distr 9859  ax-i2m1 9860  ax-1ne0 9861  ax-1rid 9862  ax-rnegex 9863  ax-rrecex 9864  ax-cnre 9865  ax-pre-lttri 9866  ax-pre-lttrn 9867  ax-pre-ltadd 9868  ax-pre-mulgt0 9869
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-int 4405  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-om 6935  df-1st 7036  df-2nd 7037  df-wrecs 7271  df-recs 7332  df-rdg 7370  df-1o 7424  df-oadd 7428  df-er 7606  df-map 7723  df-ixp 7772  df-en 7819  df-dom 7820  df-sdom 7821  df-fin 7822  df-sup 8208  df-pnf 9932  df-mnf 9933  df-xr 9934  df-ltxr 9935  df-le 9936  df-sub 10119  df-neg 10120  df-nn 10868  df-2 10926  df-3 10927  df-4 10928  df-5 10929  df-6 10930  df-7 10931  df-8 10932  df-9 10933  df-n0 11140  df-z 11211  df-dec 11326  df-uz 11520  df-fz 12153  df-struct 15643  df-ndx 15644  df-slot 15645  df-base 15646  df-sets 15647  df-ress 15648  df-plusg 15727  df-mulr 15728  df-sca 15730  df-vsca 15731  df-ip 15732  df-tset 15733  df-ple 15734  df-ds 15737  df-hom 15739  df-cco 15740  df-prds 15877  df-pws 15879  df-sra 18939  df-rgmod 18940  df-dsmm 19837  df-frlm 19852
This theorem is referenced by:  frlmphl  19881  uvcresum  19893  frlmssuvc1  19894  frlmssuvc2  19895  frlmsslsp  19896  frlmlbs  19897  frlmup1  19898  frlmisfrlm  19948  matsca2  19987  rrxcph  22905  lindsdom  32376  lindsenlbs  32377  matunitlindflem1  32378  matunitlindflem2  32379  zlmodzxzlmod  41927  aacllem  42319
  Copyright terms: Public domain W3C validator