MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frlmup3 Structured version   Visualization version   GIF version

Theorem frlmup3 20943
Description: The range of such an evaluation map is the finite linear combinations of the target vectors and also the span of the target vectors. (Contributed by Stefan O'Rear, 6-Feb-2015.)
Hypotheses
Ref Expression
frlmup.f 𝐹 = (𝑅 freeLMod 𝐼)
frlmup.b 𝐵 = (Base‘𝐹)
frlmup.c 𝐶 = (Base‘𝑇)
frlmup.v · = ( ·𝑠𝑇)
frlmup.e 𝐸 = (𝑥𝐵 ↦ (𝑇 Σg (𝑥f · 𝐴)))
frlmup.t (𝜑𝑇 ∈ LMod)
frlmup.i (𝜑𝐼𝑋)
frlmup.r (𝜑𝑅 = (Scalar‘𝑇))
frlmup.a (𝜑𝐴:𝐼𝐶)
frlmup.k 𝐾 = (LSpan‘𝑇)
Assertion
Ref Expression
frlmup3 (𝜑 → ran 𝐸 = (𝐾‘ran 𝐴))
Distinct variable groups:   𝑥,𝑅   𝑥,𝐼   𝑥,𝐹   𝑥,𝐵   𝑥,𝐶   𝑥, ·   𝑥,𝐴   𝑥,𝑋   𝑥,𝐾   𝜑,𝑥   𝑥,𝑇
Allowed substitution hint:   𝐸(𝑥)

Proof of Theorem frlmup3
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 frlmup.f . . . 4 𝐹 = (𝑅 freeLMod 𝐼)
2 frlmup.b . . . 4 𝐵 = (Base‘𝐹)
3 frlmup.c . . . 4 𝐶 = (Base‘𝑇)
4 frlmup.v . . . 4 · = ( ·𝑠𝑇)
5 frlmup.e . . . 4 𝐸 = (𝑥𝐵 ↦ (𝑇 Σg (𝑥f · 𝐴)))
6 frlmup.t . . . 4 (𝜑𝑇 ∈ LMod)
7 frlmup.i . . . 4 (𝜑𝐼𝑋)
8 frlmup.r . . . 4 (𝜑𝑅 = (Scalar‘𝑇))
9 frlmup.a . . . 4 (𝜑𝐴:𝐼𝐶)
101, 2, 3, 4, 5, 6, 7, 8, 9frlmup1 20941 . . 3 (𝜑𝐸 ∈ (𝐹 LMHom 𝑇))
11 eqid 2821 . . . . . . . 8 (Scalar‘𝑇) = (Scalar‘𝑇)
1211lmodring 19641 . . . . . . 7 (𝑇 ∈ LMod → (Scalar‘𝑇) ∈ Ring)
136, 12syl 17 . . . . . 6 (𝜑 → (Scalar‘𝑇) ∈ Ring)
148, 13eqeltrd 2913 . . . . 5 (𝜑𝑅 ∈ Ring)
15 eqid 2821 . . . . . 6 (𝑅 unitVec 𝐼) = (𝑅 unitVec 𝐼)
1615, 1, 2uvcff 20934 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼𝑋) → (𝑅 unitVec 𝐼):𝐼𝐵)
1714, 7, 16syl2anc 586 . . . 4 (𝜑 → (𝑅 unitVec 𝐼):𝐼𝐵)
1817frnd 6520 . . 3 (𝜑 → ran (𝑅 unitVec 𝐼) ⊆ 𝐵)
19 eqid 2821 . . . 4 (LSpan‘𝐹) = (LSpan‘𝐹)
20 frlmup.k . . . 4 𝐾 = (LSpan‘𝑇)
212, 19, 20lmhmlsp 19820 . . 3 ((𝐸 ∈ (𝐹 LMHom 𝑇) ∧ ran (𝑅 unitVec 𝐼) ⊆ 𝐵) → (𝐸 “ ((LSpan‘𝐹)‘ran (𝑅 unitVec 𝐼))) = (𝐾‘(𝐸 “ ran (𝑅 unitVec 𝐼))))
2210, 18, 21syl2anc 586 . 2 (𝜑 → (𝐸 “ ((LSpan‘𝐹)‘ran (𝑅 unitVec 𝐼))) = (𝐾‘(𝐸 “ ran (𝑅 unitVec 𝐼))))
232, 3lmhmf 19805 . . . . . 6 (𝐸 ∈ (𝐹 LMHom 𝑇) → 𝐸:𝐵𝐶)
2410, 23syl 17 . . . . 5 (𝜑𝐸:𝐵𝐶)
2524ffnd 6514 . . . 4 (𝜑𝐸 Fn 𝐵)
26 fnima 6477 . . . 4 (𝐸 Fn 𝐵 → (𝐸𝐵) = ran 𝐸)
2725, 26syl 17 . . 3 (𝜑 → (𝐸𝐵) = ran 𝐸)
28 eqid 2821 . . . . . . . 8 (LBasis‘𝐹) = (LBasis‘𝐹)
291, 15, 28frlmlbs 20940 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐼𝑋) → ran (𝑅 unitVec 𝐼) ∈ (LBasis‘𝐹))
3014, 7, 29syl2anc 586 . . . . . 6 (𝜑 → ran (𝑅 unitVec 𝐼) ∈ (LBasis‘𝐹))
312, 28, 19lbssp 19850 . . . . . 6 (ran (𝑅 unitVec 𝐼) ∈ (LBasis‘𝐹) → ((LSpan‘𝐹)‘ran (𝑅 unitVec 𝐼)) = 𝐵)
3230, 31syl 17 . . . . 5 (𝜑 → ((LSpan‘𝐹)‘ran (𝑅 unitVec 𝐼)) = 𝐵)
3332eqcomd 2827 . . . 4 (𝜑𝐵 = ((LSpan‘𝐹)‘ran (𝑅 unitVec 𝐼)))
3433imaeq2d 5928 . . 3 (𝜑 → (𝐸𝐵) = (𝐸 “ ((LSpan‘𝐹)‘ran (𝑅 unitVec 𝐼))))
3527, 34eqtr3d 2858 . 2 (𝜑 → ran 𝐸 = (𝐸 “ ((LSpan‘𝐹)‘ran (𝑅 unitVec 𝐼))))
36 imaco 6103 . . . 4 ((𝐸 ∘ (𝑅 unitVec 𝐼)) “ 𝐼) = (𝐸 “ ((𝑅 unitVec 𝐼) “ 𝐼))
379ffnd 6514 . . . . . . 7 (𝜑𝐴 Fn 𝐼)
3817ffnd 6514 . . . . . . . 8 (𝜑 → (𝑅 unitVec 𝐼) Fn 𝐼)
39 fnco 6464 . . . . . . . 8 ((𝐸 Fn 𝐵 ∧ (𝑅 unitVec 𝐼) Fn 𝐼 ∧ ran (𝑅 unitVec 𝐼) ⊆ 𝐵) → (𝐸 ∘ (𝑅 unitVec 𝐼)) Fn 𝐼)
4025, 38, 18, 39syl3anc 1367 . . . . . . 7 (𝜑 → (𝐸 ∘ (𝑅 unitVec 𝐼)) Fn 𝐼)
41 fvco2 6757 . . . . . . . . 9 (((𝑅 unitVec 𝐼) Fn 𝐼𝑢𝐼) → ((𝐸 ∘ (𝑅 unitVec 𝐼))‘𝑢) = (𝐸‘((𝑅 unitVec 𝐼)‘𝑢)))
4238, 41sylan 582 . . . . . . . 8 ((𝜑𝑢𝐼) → ((𝐸 ∘ (𝑅 unitVec 𝐼))‘𝑢) = (𝐸‘((𝑅 unitVec 𝐼)‘𝑢)))
436adantr 483 . . . . . . . . 9 ((𝜑𝑢𝐼) → 𝑇 ∈ LMod)
447adantr 483 . . . . . . . . 9 ((𝜑𝑢𝐼) → 𝐼𝑋)
458adantr 483 . . . . . . . . 9 ((𝜑𝑢𝐼) → 𝑅 = (Scalar‘𝑇))
469adantr 483 . . . . . . . . 9 ((𝜑𝑢𝐼) → 𝐴:𝐼𝐶)
47 simpr 487 . . . . . . . . 9 ((𝜑𝑢𝐼) → 𝑢𝐼)
481, 2, 3, 4, 5, 43, 44, 45, 46, 47, 15frlmup2 20942 . . . . . . . 8 ((𝜑𝑢𝐼) → (𝐸‘((𝑅 unitVec 𝐼)‘𝑢)) = (𝐴𝑢))
4942, 48eqtr2d 2857 . . . . . . 7 ((𝜑𝑢𝐼) → (𝐴𝑢) = ((𝐸 ∘ (𝑅 unitVec 𝐼))‘𝑢))
5037, 40, 49eqfnfvd 6804 . . . . . 6 (𝜑𝐴 = (𝐸 ∘ (𝑅 unitVec 𝐼)))
5150imaeq1d 5927 . . . . 5 (𝜑 → (𝐴𝐼) = ((𝐸 ∘ (𝑅 unitVec 𝐼)) “ 𝐼))
52 fnima 6477 . . . . . 6 (𝐴 Fn 𝐼 → (𝐴𝐼) = ran 𝐴)
5337, 52syl 17 . . . . 5 (𝜑 → (𝐴𝐼) = ran 𝐴)
5451, 53eqtr3d 2858 . . . 4 (𝜑 → ((𝐸 ∘ (𝑅 unitVec 𝐼)) “ 𝐼) = ran 𝐴)
55 fnima 6477 . . . . . 6 ((𝑅 unitVec 𝐼) Fn 𝐼 → ((𝑅 unitVec 𝐼) “ 𝐼) = ran (𝑅 unitVec 𝐼))
5638, 55syl 17 . . . . 5 (𝜑 → ((𝑅 unitVec 𝐼) “ 𝐼) = ran (𝑅 unitVec 𝐼))
5756imaeq2d 5928 . . . 4 (𝜑 → (𝐸 “ ((𝑅 unitVec 𝐼) “ 𝐼)) = (𝐸 “ ran (𝑅 unitVec 𝐼)))
5836, 54, 573eqtr3a 2880 . . 3 (𝜑 → ran 𝐴 = (𝐸 “ ran (𝑅 unitVec 𝐼)))
5958fveq2d 6673 . 2 (𝜑 → (𝐾‘ran 𝐴) = (𝐾‘(𝐸 “ ran (𝑅 unitVec 𝐼))))
6022, 35, 593eqtr4d 2866 1 (𝜑 → ran 𝐸 = (𝐾‘ran 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wcel 2110  wss 3935  cmpt 5145  ran crn 5555  cima 5557  ccom 5558   Fn wfn 6349  wf 6350  cfv 6354  (class class class)co 7155  f cof 7406  Basecbs 16482  Scalarcsca 16567   ·𝑠 cvsca 16568   Σg cgsu 16713  Ringcrg 19296  LModclmod 19633  LSpanclspn 19742   LMHom clmhm 19790  LBasisclbs 19845   freeLMod cfrlm 20889   unitVec cuvc 20925
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-int 4876  df-iun 4920  df-iin 4921  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-se 5514  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-isom 6363  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-of 7408  df-om 7580  df-1st 7688  df-2nd 7689  df-supp 7830  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-1o 8101  df-oadd 8105  df-er 8288  df-map 8407  df-ixp 8461  df-en 8509  df-dom 8510  df-sdom 8511  df-fin 8512  df-fsupp 8833  df-sup 8905  df-oi 8973  df-card 9367  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-nn 11638  df-2 11699  df-3 11700  df-4 11701  df-5 11702  df-6 11703  df-7 11704  df-8 11705  df-9 11706  df-n0 11897  df-z 11981  df-dec 12098  df-uz 12243  df-fz 12892  df-fzo 13033  df-seq 13369  df-hash 13690  df-struct 16484  df-ndx 16485  df-slot 16486  df-base 16488  df-sets 16489  df-ress 16490  df-plusg 16577  df-mulr 16578  df-sca 16580  df-vsca 16581  df-ip 16582  df-tset 16583  df-ple 16584  df-ds 16586  df-hom 16588  df-cco 16589  df-0g 16714  df-gsum 16715  df-prds 16720  df-pws 16722  df-mre 16856  df-mrc 16857  df-acs 16859  df-mgm 17851  df-sgrp 17900  df-mnd 17911  df-mhm 17955  df-submnd 17956  df-grp 18105  df-minusg 18106  df-sbg 18107  df-mulg 18224  df-subg 18275  df-ghm 18355  df-cntz 18446  df-cmn 18907  df-abl 18908  df-mgp 19239  df-ur 19251  df-ring 19298  df-subrg 19532  df-lmod 19635  df-lss 19703  df-lsp 19743  df-lmhm 19793  df-lbs 19846  df-sra 19943  df-rgmod 19944  df-nzr 20030  df-dsmm 20875  df-frlm 20890  df-uvc 20926
This theorem is referenced by:  ellspd  20945  indlcim  20983  lnrfg  39717
  Copyright terms: Public domain W3C validator