![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > frlmval | Structured version Visualization version GIF version |
Description: Value of the free module. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
Ref | Expression |
---|---|
frlmval.f | ⊢ 𝐹 = (𝑅 freeLMod 𝐼) |
Ref | Expression |
---|---|
frlmval | ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → 𝐹 = (𝑅 ⊕m (𝐼 × {(ringLMod‘𝑅)}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frlmval.f | . 2 ⊢ 𝐹 = (𝑅 freeLMod 𝐼) | |
2 | elex 3243 | . . 3 ⊢ (𝑅 ∈ 𝑉 → 𝑅 ∈ V) | |
3 | elex 3243 | . . 3 ⊢ (𝐼 ∈ 𝑊 → 𝐼 ∈ V) | |
4 | id 22 | . . . . 5 ⊢ (𝑟 = 𝑅 → 𝑟 = 𝑅) | |
5 | fveq2 6229 | . . . . . . 7 ⊢ (𝑟 = 𝑅 → (ringLMod‘𝑟) = (ringLMod‘𝑅)) | |
6 | 5 | sneqd 4222 | . . . . . 6 ⊢ (𝑟 = 𝑅 → {(ringLMod‘𝑟)} = {(ringLMod‘𝑅)}) |
7 | 6 | xpeq2d 5173 | . . . . 5 ⊢ (𝑟 = 𝑅 → (𝑖 × {(ringLMod‘𝑟)}) = (𝑖 × {(ringLMod‘𝑅)})) |
8 | 4, 7 | oveq12d 6708 | . . . 4 ⊢ (𝑟 = 𝑅 → (𝑟 ⊕m (𝑖 × {(ringLMod‘𝑟)})) = (𝑅 ⊕m (𝑖 × {(ringLMod‘𝑅)}))) |
9 | xpeq1 5157 | . . . . 5 ⊢ (𝑖 = 𝐼 → (𝑖 × {(ringLMod‘𝑅)}) = (𝐼 × {(ringLMod‘𝑅)})) | |
10 | 9 | oveq2d 6706 | . . . 4 ⊢ (𝑖 = 𝐼 → (𝑅 ⊕m (𝑖 × {(ringLMod‘𝑅)})) = (𝑅 ⊕m (𝐼 × {(ringLMod‘𝑅)}))) |
11 | df-frlm 20139 | . . . 4 ⊢ freeLMod = (𝑟 ∈ V, 𝑖 ∈ V ↦ (𝑟 ⊕m (𝑖 × {(ringLMod‘𝑟)}))) | |
12 | ovex 6718 | . . . 4 ⊢ (𝑅 ⊕m (𝐼 × {(ringLMod‘𝑅)})) ∈ V | |
13 | 8, 10, 11, 12 | ovmpt2 6838 | . . 3 ⊢ ((𝑅 ∈ V ∧ 𝐼 ∈ V) → (𝑅 freeLMod 𝐼) = (𝑅 ⊕m (𝐼 × {(ringLMod‘𝑅)}))) |
14 | 2, 3, 13 | syl2an 493 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → (𝑅 freeLMod 𝐼) = (𝑅 ⊕m (𝐼 × {(ringLMod‘𝑅)}))) |
15 | 1, 14 | syl5eq 2697 | 1 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → 𝐹 = (𝑅 ⊕m (𝐼 × {(ringLMod‘𝑅)}))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1523 ∈ wcel 2030 Vcvv 3231 {csn 4210 × cxp 5141 ‘cfv 5926 (class class class)co 6690 ringLModcrglmod 19217 ⊕m cdsmm 20123 freeLMod cfrlm 20138 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pr 4936 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-sbc 3469 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-br 4686 df-opab 4746 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-iota 5889 df-fun 5928 df-fv 5934 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-frlm 20139 |
This theorem is referenced by: frlmlmod 20141 frlmpws 20142 frlmlss 20143 frlmpwsfi 20144 frlmbas 20147 |
Copyright terms: Public domain | W3C validator |