MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frmdmnd Structured version   Visualization version   GIF version

Theorem frmdmnd 18027
Description: A free monoid is a monoid. (Contributed by Mario Carneiro, 27-Sep-2015.) (Revised by Mario Carneiro, 27-Feb-2016.)
Hypothesis
Ref Expression
frmdmnd.m 𝑀 = (freeMnd‘𝐼)
Assertion
Ref Expression
frmdmnd (𝐼𝑉𝑀 ∈ Mnd)

Proof of Theorem frmdmnd
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2825 . 2 (𝐼𝑉 → (Base‘𝑀) = (Base‘𝑀))
2 eqidd 2825 . 2 (𝐼𝑉 → (+g𝑀) = (+g𝑀))
3 frmdmnd.m . . . . . 6 𝑀 = (freeMnd‘𝐼)
4 eqid 2824 . . . . . 6 (Base‘𝑀) = (Base‘𝑀)
5 eqid 2824 . . . . . 6 (+g𝑀) = (+g𝑀)
63, 4, 5frmdadd 18023 . . . . 5 ((𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀)) → (𝑥(+g𝑀)𝑦) = (𝑥 ++ 𝑦))
73, 4frmdelbas 18021 . . . . . 6 (𝑥 ∈ (Base‘𝑀) → 𝑥 ∈ Word 𝐼)
83, 4frmdelbas 18021 . . . . . 6 (𝑦 ∈ (Base‘𝑀) → 𝑦 ∈ Word 𝐼)
9 ccatcl 13929 . . . . . 6 ((𝑥 ∈ Word 𝐼𝑦 ∈ Word 𝐼) → (𝑥 ++ 𝑦) ∈ Word 𝐼)
107, 8, 9syl2an 597 . . . . 5 ((𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀)) → (𝑥 ++ 𝑦) ∈ Word 𝐼)
116, 10eqeltrd 2916 . . . 4 ((𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀)) → (𝑥(+g𝑀)𝑦) ∈ Word 𝐼)
12113adant1 1126 . . 3 ((𝐼𝑉𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀)) → (𝑥(+g𝑀)𝑦) ∈ Word 𝐼)
133, 4frmdbas 18020 . . . 4 (𝐼𝑉 → (Base‘𝑀) = Word 𝐼)
14133ad2ant1 1129 . . 3 ((𝐼𝑉𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀)) → (Base‘𝑀) = Word 𝐼)
1512, 14eleqtrrd 2919 . 2 ((𝐼𝑉𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀)) → (𝑥(+g𝑀)𝑦) ∈ (Base‘𝑀))
16 simpr1 1190 . . . . . 6 ((𝐼𝑉 ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → 𝑥 ∈ (Base‘𝑀))
1716, 7syl 17 . . . . 5 ((𝐼𝑉 ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → 𝑥 ∈ Word 𝐼)
18 simpr2 1191 . . . . . 6 ((𝐼𝑉 ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → 𝑦 ∈ (Base‘𝑀))
1918, 8syl 17 . . . . 5 ((𝐼𝑉 ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → 𝑦 ∈ Word 𝐼)
20 simpr3 1192 . . . . . 6 ((𝐼𝑉 ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → 𝑧 ∈ (Base‘𝑀))
213, 4frmdelbas 18021 . . . . . 6 (𝑧 ∈ (Base‘𝑀) → 𝑧 ∈ Word 𝐼)
2220, 21syl 17 . . . . 5 ((𝐼𝑉 ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → 𝑧 ∈ Word 𝐼)
23 ccatass 13945 . . . . 5 ((𝑥 ∈ Word 𝐼𝑦 ∈ Word 𝐼𝑧 ∈ Word 𝐼) → ((𝑥 ++ 𝑦) ++ 𝑧) = (𝑥 ++ (𝑦 ++ 𝑧)))
2417, 19, 22, 23syl3anc 1367 . . . 4 ((𝐼𝑉 ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → ((𝑥 ++ 𝑦) ++ 𝑧) = (𝑥 ++ (𝑦 ++ 𝑧)))
2516, 18, 10syl2anc 586 . . . . . 6 ((𝐼𝑉 ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → (𝑥 ++ 𝑦) ∈ Word 𝐼)
2613adantr 483 . . . . . 6 ((𝐼𝑉 ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → (Base‘𝑀) = Word 𝐼)
2725, 26eleqtrrd 2919 . . . . 5 ((𝐼𝑉 ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → (𝑥 ++ 𝑦) ∈ (Base‘𝑀))
283, 4, 5frmdadd 18023 . . . . 5 (((𝑥 ++ 𝑦) ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀)) → ((𝑥 ++ 𝑦)(+g𝑀)𝑧) = ((𝑥 ++ 𝑦) ++ 𝑧))
2927, 20, 28syl2anc 586 . . . 4 ((𝐼𝑉 ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → ((𝑥 ++ 𝑦)(+g𝑀)𝑧) = ((𝑥 ++ 𝑦) ++ 𝑧))
30 ccatcl 13929 . . . . . . 7 ((𝑦 ∈ Word 𝐼𝑧 ∈ Word 𝐼) → (𝑦 ++ 𝑧) ∈ Word 𝐼)
3119, 22, 30syl2anc 586 . . . . . 6 ((𝐼𝑉 ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → (𝑦 ++ 𝑧) ∈ Word 𝐼)
3231, 26eleqtrrd 2919 . . . . 5 ((𝐼𝑉 ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → (𝑦 ++ 𝑧) ∈ (Base‘𝑀))
333, 4, 5frmdadd 18023 . . . . 5 ((𝑥 ∈ (Base‘𝑀) ∧ (𝑦 ++ 𝑧) ∈ (Base‘𝑀)) → (𝑥(+g𝑀)(𝑦 ++ 𝑧)) = (𝑥 ++ (𝑦 ++ 𝑧)))
3416, 32, 33syl2anc 586 . . . 4 ((𝐼𝑉 ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → (𝑥(+g𝑀)(𝑦 ++ 𝑧)) = (𝑥 ++ (𝑦 ++ 𝑧)))
3524, 29, 343eqtr4d 2869 . . 3 ((𝐼𝑉 ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → ((𝑥 ++ 𝑦)(+g𝑀)𝑧) = (𝑥(+g𝑀)(𝑦 ++ 𝑧)))
3616, 18, 6syl2anc 586 . . . 4 ((𝐼𝑉 ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → (𝑥(+g𝑀)𝑦) = (𝑥 ++ 𝑦))
3736oveq1d 7174 . . 3 ((𝐼𝑉 ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → ((𝑥(+g𝑀)𝑦)(+g𝑀)𝑧) = ((𝑥 ++ 𝑦)(+g𝑀)𝑧))
383, 4, 5frmdadd 18023 . . . . 5 ((𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀)) → (𝑦(+g𝑀)𝑧) = (𝑦 ++ 𝑧))
3918, 20, 38syl2anc 586 . . . 4 ((𝐼𝑉 ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → (𝑦(+g𝑀)𝑧) = (𝑦 ++ 𝑧))
4039oveq2d 7175 . . 3 ((𝐼𝑉 ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → (𝑥(+g𝑀)(𝑦(+g𝑀)𝑧)) = (𝑥(+g𝑀)(𝑦 ++ 𝑧)))
4135, 37, 403eqtr4d 2869 . 2 ((𝐼𝑉 ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → ((𝑥(+g𝑀)𝑦)(+g𝑀)𝑧) = (𝑥(+g𝑀)(𝑦(+g𝑀)𝑧)))
42 wrd0 13892 . . 3 ∅ ∈ Word 𝐼
4342, 13eleqtrrid 2923 . 2 (𝐼𝑉 → ∅ ∈ (Base‘𝑀))
443, 4, 5frmdadd 18023 . . . 4 ((∅ ∈ (Base‘𝑀) ∧ 𝑥 ∈ (Base‘𝑀)) → (∅(+g𝑀)𝑥) = (∅ ++ 𝑥))
4543, 44sylan 582 . . 3 ((𝐼𝑉𝑥 ∈ (Base‘𝑀)) → (∅(+g𝑀)𝑥) = (∅ ++ 𝑥))
467adantl 484 . . . 4 ((𝐼𝑉𝑥 ∈ (Base‘𝑀)) → 𝑥 ∈ Word 𝐼)
47 ccatlid 13943 . . . 4 (𝑥 ∈ Word 𝐼 → (∅ ++ 𝑥) = 𝑥)
4846, 47syl 17 . . 3 ((𝐼𝑉𝑥 ∈ (Base‘𝑀)) → (∅ ++ 𝑥) = 𝑥)
4945, 48eqtrd 2859 . 2 ((𝐼𝑉𝑥 ∈ (Base‘𝑀)) → (∅(+g𝑀)𝑥) = 𝑥)
503, 4, 5frmdadd 18023 . . . . 5 ((𝑥 ∈ (Base‘𝑀) ∧ ∅ ∈ (Base‘𝑀)) → (𝑥(+g𝑀)∅) = (𝑥 ++ ∅))
5150ancoms 461 . . . 4 ((∅ ∈ (Base‘𝑀) ∧ 𝑥 ∈ (Base‘𝑀)) → (𝑥(+g𝑀)∅) = (𝑥 ++ ∅))
5243, 51sylan 582 . . 3 ((𝐼𝑉𝑥 ∈ (Base‘𝑀)) → (𝑥(+g𝑀)∅) = (𝑥 ++ ∅))
53 ccatrid 13944 . . . 4 (𝑥 ∈ Word 𝐼 → (𝑥 ++ ∅) = 𝑥)
5446, 53syl 17 . . 3 ((𝐼𝑉𝑥 ∈ (Base‘𝑀)) → (𝑥 ++ ∅) = 𝑥)
5552, 54eqtrd 2859 . 2 ((𝐼𝑉𝑥 ∈ (Base‘𝑀)) → (𝑥(+g𝑀)∅) = 𝑥)
561, 2, 15, 41, 43, 49, 55ismndd 17936 1 (𝐼𝑉𝑀 ∈ Mnd)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1536  wcel 2113  c0 4294  cfv 6358  (class class class)co 7159  Word cword 13864   ++ cconcat 13925  Basecbs 16486  +gcplusg 16568  Mndcmnd 17914  freeMndcfrmd 18015
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-1st 7692  df-2nd 7693  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-oadd 8109  df-er 8292  df-map 8411  df-en 8513  df-dom 8514  df-sdom 8515  df-fin 8516  df-card 9371  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-nn 11642  df-2 11703  df-n0 11901  df-z 11985  df-uz 12247  df-fz 12896  df-fzo 13037  df-hash 13694  df-word 13865  df-concat 13926  df-struct 16488  df-ndx 16489  df-slot 16490  df-base 16492  df-plusg 16581  df-mgm 17855  df-sgrp 17904  df-mnd 17915  df-frmd 18017
This theorem is referenced by:  frmdsssubm  18029  frmdgsum  18030  frmdup1  18032  frgp0  18889  frgpadd  18892  frgpmhm  18894  mrsubff  32763  mrsubccat  32769  elmrsubrn  32771
  Copyright terms: Public domain W3C validator