MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frmdsssubm Structured version   Visualization version   GIF version

Theorem frmdsssubm 17319
Description: The set of words taking values in a subset is a (free) submonoid of the free monoid. (Contributed by Mario Carneiro, 27-Sep-2015.) (Revised by Mario Carneiro, 27-Feb-2016.)
Hypothesis
Ref Expression
frmdmnd.m 𝑀 = (freeMnd‘𝐼)
Assertion
Ref Expression
frmdsssubm ((𝐼𝑉𝐽𝐼) → Word 𝐽 ∈ (SubMnd‘𝑀))

Proof of Theorem frmdsssubm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sswrd 13252 . . . 4 (𝐽𝐼 → Word 𝐽 ⊆ Word 𝐼)
21adantl 482 . . 3 ((𝐼𝑉𝐽𝐼) → Word 𝐽 ⊆ Word 𝐼)
3 frmdmnd.m . . . . 5 𝑀 = (freeMnd‘𝐼)
4 eqid 2621 . . . . 5 (Base‘𝑀) = (Base‘𝑀)
53, 4frmdbas 17310 . . . 4 (𝐼𝑉 → (Base‘𝑀) = Word 𝐼)
65adantr 481 . . 3 ((𝐼𝑉𝐽𝐼) → (Base‘𝑀) = Word 𝐼)
72, 6sseqtr4d 3621 . 2 ((𝐼𝑉𝐽𝐼) → Word 𝐽 ⊆ (Base‘𝑀))
8 wrd0 13269 . . 3 ∅ ∈ Word 𝐽
98a1i 11 . 2 ((𝐼𝑉𝐽𝐼) → ∅ ∈ Word 𝐽)
107sselda 3583 . . . . . 6 (((𝐼𝑉𝐽𝐼) ∧ 𝑥 ∈ Word 𝐽) → 𝑥 ∈ (Base‘𝑀))
117sselda 3583 . . . . . 6 (((𝐼𝑉𝐽𝐼) ∧ 𝑦 ∈ Word 𝐽) → 𝑦 ∈ (Base‘𝑀))
1210, 11anim12dan 881 . . . . 5 (((𝐼𝑉𝐽𝐼) ∧ (𝑥 ∈ Word 𝐽𝑦 ∈ Word 𝐽)) → (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀)))
13 eqid 2621 . . . . . 6 (+g𝑀) = (+g𝑀)
143, 4, 13frmdadd 17313 . . . . 5 ((𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀)) → (𝑥(+g𝑀)𝑦) = (𝑥 ++ 𝑦))
1512, 14syl 17 . . . 4 (((𝐼𝑉𝐽𝐼) ∧ (𝑥 ∈ Word 𝐽𝑦 ∈ Word 𝐽)) → (𝑥(+g𝑀)𝑦) = (𝑥 ++ 𝑦))
16 ccatcl 13298 . . . . 5 ((𝑥 ∈ Word 𝐽𝑦 ∈ Word 𝐽) → (𝑥 ++ 𝑦) ∈ Word 𝐽)
1716adantl 482 . . . 4 (((𝐼𝑉𝐽𝐼) ∧ (𝑥 ∈ Word 𝐽𝑦 ∈ Word 𝐽)) → (𝑥 ++ 𝑦) ∈ Word 𝐽)
1815, 17eqeltrd 2698 . . 3 (((𝐼𝑉𝐽𝐼) ∧ (𝑥 ∈ Word 𝐽𝑦 ∈ Word 𝐽)) → (𝑥(+g𝑀)𝑦) ∈ Word 𝐽)
1918ralrimivva 2965 . 2 ((𝐼𝑉𝐽𝐼) → ∀𝑥 ∈ Word 𝐽𝑦 ∈ Word 𝐽(𝑥(+g𝑀)𝑦) ∈ Word 𝐽)
203frmdmnd 17317 . . . 4 (𝐼𝑉𝑀 ∈ Mnd)
2120adantr 481 . . 3 ((𝐼𝑉𝐽𝐼) → 𝑀 ∈ Mnd)
223frmd0 17318 . . . 4 ∅ = (0g𝑀)
234, 22, 13issubm 17268 . . 3 (𝑀 ∈ Mnd → (Word 𝐽 ∈ (SubMnd‘𝑀) ↔ (Word 𝐽 ⊆ (Base‘𝑀) ∧ ∅ ∈ Word 𝐽 ∧ ∀𝑥 ∈ Word 𝐽𝑦 ∈ Word 𝐽(𝑥(+g𝑀)𝑦) ∈ Word 𝐽)))
2421, 23syl 17 . 2 ((𝐼𝑉𝐽𝐼) → (Word 𝐽 ∈ (SubMnd‘𝑀) ↔ (Word 𝐽 ⊆ (Base‘𝑀) ∧ ∅ ∈ Word 𝐽 ∧ ∀𝑥 ∈ Word 𝐽𝑦 ∈ Word 𝐽(𝑥(+g𝑀)𝑦) ∈ Word 𝐽)))
257, 9, 19, 24mpbir3and 1243 1 ((𝐼𝑉𝐽𝐼) → Word 𝐽 ∈ (SubMnd‘𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wcel 1987  wral 2907  wss 3555  c0 3891  cfv 5847  (class class class)co 6604  Word cword 13230   ++ cconcat 13232  Basecbs 15781  +gcplusg 15862  Mndcmnd 17215  SubMndcsubmnd 17255  freeMndcfrmd 17305
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-oadd 7509  df-er 7687  df-map 7804  df-pm 7805  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-card 8709  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-nn 10965  df-2 11023  df-n0 11237  df-z 11322  df-uz 11632  df-fz 12269  df-fzo 12407  df-hash 13058  df-word 13238  df-concat 13240  df-struct 15783  df-ndx 15784  df-slot 15785  df-base 15786  df-plusg 15875  df-0g 16023  df-mgm 17163  df-sgrp 17205  df-mnd 17216  df-submnd 17257  df-frmd 17307
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator